Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Quality in Sport

Revolutionizing Sports: The Role of Wearable Technology and AI in Training and Performance Analysis
  • Home
  • /
  • Revolutionizing Sports: The Role of Wearable Technology and AI in Training and Performance Analysis
  1. Home /
  2. Archives /
  3. Vol. 39 (2025) /
  4. Medical Sciences

Revolutionizing Sports: The Role of Wearable Technology and AI in Training and Performance Analysis

Authors

  • Stanisław Dudek University Clinical Center of the Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland https://orcid.org/0009-0002-3641-4865
  • Weronika Koziak Wolski Hospital Dr. Anna Gostyńska, Marcina Kasprzaka 17, 01-211 Warsaw, Poland https://orcid.org/0009-0003-5295-5765
  • Michalina Makieła Wolski Hospital Dr. Anna Gostyńska, Marcina Kasprzaka 17, 01-211 Warsaw, Poland https://orcid.org/0009-0003-4465-8584
  • Aleksandra Bętkowska National Medical Institute of the Ministry of the Interior and Administration, Wołoska 137, 02-507 Warsaw, Poland https://orcid.org/0009-0001-5108-4262
  • Agata Kornacka University Clinical Center of the Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland https://orcid.org/0009-0007-2877-3514
  • Wojciech Dudek Military University of Technology, 2 Kaliskiego Street, 00-908 Warsaw, Poland https://orcid.org/0009-0000-2404-9560
  • Kamila Szostak The Infant Jesus Teaching Hospital, Lindleya 4, 02-005 Warszawa https://orcid.org/0009-0005-6216-0864
  • Rafał Tomaka University Clinical Center of the Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland https://orcid.org/0009-0002-5057-6131
  • Anna Byra Medical University of Silesia in Katowice, Poniatowskiego 15, 40-055 Katowice, Poland https://orcid.org/0009-0009-7934-5493

DOI:

https://doi.org/10.12775/QS.2025.39.58456

Keywords

wearable technology, artificial intelligence, sports performance, injury prevention, fatigue monitoring, biomechanics

Abstract

The integration of wearable technology and artificial intelligence (AI) has transformed modern sports science by enhancing athlete monitoring, performance optimization, and injury prevention. Wearable sensors, including fitness trackers, GPS-based devices, and biomechanical motion trackers, provide real-time physiological and biomechanical data, enabling personalized training programs and workload management. AI-driven analytics, utilizing machine learning, deep learning, and computer vision, enhance performance assessment, injury prediction, and rehabilitation strategies by processing vast datasets to detect fatigue patterns, optimize recovery schedules, and refine tactical decision-making.

Despite these advancements, challenges persist regarding data accuracy, privacy, and accessibility. Variability in sensor precision and standardization issues hinder reliable cross-comparisons, necessitating the development of validation protocols. Additionally, AI-driven wearables raise concerns over data security, ethical handling, and equitable access, as high costs limit their use in amateur sports. Future research should focus on refining AI-powered injury prevention models, improving biometric sensing capabilities, and advancing edge AI for real-time data processing. Addressing these challenges will ensure that wearable technology and AI continue to enhance sports performance, injury mitigation, and athlete well-being at all levels of competition.

References

Akhoondian, M. (2025). Applications of deep learning in the assessment of lower limb injuries in athletes. https://doi.org/10.32598/JSRS.2410.1019

Antonijevic, M., Zivkovic, M., Djuric Jovicic, M., Nikolic, B., Perisic, J., Milovanovic, M., Jovanovic, L., Abdel-Salam, M., & Nebojsa Bacanin, &. (2025). Intrusion detection in metaverse environment internet of things systems by metaheuristics tuned two level framework. Scientific Reports 2025 15:1, 15(1), 1–31. https://doi.org/10.1038/s41598-025-88135-9

Bernardes, R., Giannouli, E., Neves, H., & Parola, V. (2025). User-Centered Technology for Exercise Optimization in Older Adults. Frontiers in Sports and Active Living, 7, 1558979. https://doi.org/10.3389/FSPOR.2025.1558979

Bozkaya-Aras, E., Onel, T., Eriskin, L., & Karatas, M. (2025). Intelligent human activity recognition for healthcare digital twin. Internet of Things, 30, 101497. https://doi.org/10.1016/J.IOT.2025.101497

Campos, B. T., Nakamura, F. Y., Penna, E. M., Moraes, R. G. S. D., Gabriel, J., Rodrigues, D. S., Albuquerque, M. R., & Prado, L. S. (2023). Monitoring Training Loads in Judo Athletes: Different Time Courses of Physiological, Neuromuscular, and Perceptual Responses. International Journal of Exercise Science, 16(6), 638. https://doi.org/10.70252/HEAC5722

Capdevila, M., & Caparros, L. (2024). Heart Rate Variability in Elite Team Sports: A Systematic Review. Ope Acce Jou Dis Glo Heal, 2(3), 1–12.

Cho, U., & Im, K. (2024). Adolescent athletes’ sleep problems and overtraining A case study. Sports Psychiatry, 3(1), 47–50. https://doi.org/10.1024/2674-0052/A000070

Dwyer, D. B., Kempe, M., & Knobbe, A. (2022). Using Artificial Intelligence to Enhance Sport Performance. Frontiers in Sports and Active Living, 4, 886730. https://doi.org/10.3389/FSPOR.2022.886730/BIBTEX

Edholm, P., Ørtenblad, N., Holmberg, H. C., & Sperlich, B. (2024). Optimizing recovery strategies for winter athletes: insights for Milano-Cortina 2026 Olympic Games. Sport Sciences for Health. https://doi.org/10.1007/S11332-024-01245-1

Gascón, A., Marco, Á., Buldain, D., Alfaro-Santafé, J., Alfaro-Santafé, J. V., Gómez-Bernal, A., & Casas, R. (2025). A Diagnostic and Performance System for Soccer: Technical Design and Development. Sports 2025, Vol. 13, Page 10, 13(1), 10. https://doi.org/10.3390/SPORTS13010010

López-Samanes, A., Trakman, G., & Roberts, J. D. (2024). Nutrition for team and individual sport athletes. Frontiers in Sports and Active Living, 6. https://doi.org/10.3389/FSPOR.2024.1524748

Marengo, A. (2024). Future of AI-Driven IoT: Identifying Emerging Trends in Intelligent Data Analysis and Privacy Protection. https://doi.org/10.20944/PREPRINTS202312.2184.V3

Meeusen, R., Duclos, M., Foster, C., Fry, A., Gleeson, M., Nieman, D., Raglin, J., Rietjens, G., Steinacker, J., & Urhausen, A. (2013). Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Medicine and Science in Sports and Exercise, 45(1), 186–205. https://doi.org/10.1249/MSS.0B013E318279A10A

Robertson, P. S. (2020). Man & machine: Adaptive tools for the contemporary performance analyst. Journal of Sports Sciences, 38(18), 2118–2126. https://doi.org/10.1080/02640414.2020.1774143

Stoican, K., & Oeschger, R. (2025). 600 meters to VO2max: Predicting Cardiorespiratory Fitness with an Uphill Run. Current Issues in Sport Science (CISS), 10(2), 024–024. https://doi.org/10.36950/2025.2CISS024

Turki, A. F. (2025). Assessing the Efficacy of Various Machine Learning Algorithms in Predicting Blood Pressure Using Pulse Transit Time. Diagnostics 2025, Vol. 15, Page 261, 15(3), 261. https://doi.org/10.3390/DIAGNOSTICS15030261

Venkatesh, S., & Al, E. (2025). Human Stress Detection Based on Sleeping Habits Using Machine Learning Algorithms. In Journal of Science Technology and Research (Issue 1).

Wang, B., Wei, X., Zhao, X., Wang, W., Deng, J., & Yang, H. (2024). A Review on In Vivo Research Dehydration Models and Application of Rehydration Strategies. Nutrients 2024, Vol. 16, Page 3566, 16(20), 3566. https://doi.org/10.3390/NU16203566

Wu, H., Jiao, Y., Jiang, C., Wang, T., & Yu, J. (2025). Fatigue state evaluation of urban railway transit drivers using psychological, biological, and physical response signals. IEEE Access, 1–1. https://doi.org/10.1109/ACCESS.2025.3533487

Xu, G., & Xing, X. (2025). Advancements in carbon nanotube-based sensors for human motion detection. https://doi.org/10.1590/1517-7076-RMAT-2024-0811

Zhu, Z. (2025). Design and implementation of an intelligent sports management system (ISMS) using wireless sensor networks. PeerJ Computer Science, 11, e2637. https://doi.org/10.7717/PEERJ-CS.2637

Downloads

  • PDF

Published

2025-03-07

How to Cite

1.
DUDEK, Stanisław, KOZIAK, Weronika, MAKIEŁA, Michalina, BĘTKOWSKA, Aleksandra, KORNACKA, Agata, DUDEK, Wojciech, SZOSTAK, Kamila, TOMAKA, Rafał and BYRA, Anna. Revolutionizing Sports: The Role of Wearable Technology and AI in Training and Performance Analysis. Quality in Sport. Online. 7 March 2025. Vol. 39, p. 58456. [Accessed 29 June 2025]. DOI 10.12775/QS.2025.39.58456.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 39 (2025)

Section

Medical Sciences

License

Copyright (c) 2025 Stanisław Dudek, Weronika Koziak, Michalina Makieła, Aleksandra Bętkowska, Agata Kornacka, Wojciech Dudek, Kamila Szostak, Rafał Tomaka, Anna Byra

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats

Number of views and downloads: 1628
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

wearable technology, artificial intelligence, sports performance, injury prevention, fatigue monitoring, biomechanics
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop