The Role of the Gut Microbiome in Exercise-Induced Inflammation and Recovery: A Narrative Review
DOI:
https://doi.org/10.12775/QS.2025.39.58430Keywords
gut microbiome, exercise-induced inflammation, short-chain fatty acids, dysbiosis, athletic recovery, sport performanceAbstract
Background
Exercise-induced inflammation is a complex physiological response influenced by both the intensity of physical activity and the gut microbiome. While moderate exercise enhances immune function and microbial diversity, excessive training can lead to gut dysbiosis, increased intestinal permeability, and chronic inflammation.
Objective
This review examines the interplay between the gut microbiome, exercise-induced inflammation, and recovery. It explores the mechanisms by which gut microbes influence immune regulation, metabolic adaptation, and muscle repair, while also identifying potential nutritional strategies to optimize gut health and enhance post-exercise recovery.
Results
Findings suggest that moderate exercise enhances microbial diversity and promotes an anti-inflammatory immune profile. Conversely, excessive training induces gut dysbiosis, increases intestinal permeability, and elevates inflammatory cytokines. Nutritional interventions, particularly probiotic and prebiotic supplementation, polyphenol-rich foods, dietary fiber, and omega-3 fatty acids, have been shown to mitigate gut permeability, enhance SCFA production, and accelerate immune recovery.
Conclusion
The gut microbiome plays a critical role in regulating exercise-induced inflammation and recovery, influencing immune responses, metabolic efficiency, and muscle repair. Integrating microbiome-targeted nutritional strategies may optimize gut health, enhance recovery, and improve overall athletic performance. Future research should explore personalized microbiome-based interventions, considering individual variability in microbiota composition, training load, and dietary habits.
References
Adak, A., & Khan, M. R. (2019). An insight into gut microbiota and its functionalities. Cellular and Molecular Life Sciences : CMLS, 76(3), 473–493. https://doi.org/10.1007/S00018-018-2943-4
Akbari-Fakhrabadi, M., Kaviani, M., & Fernández-Lázaro, D. (2024). Diet and exercise-induced inflammation. Frontiers in Nutrition, 11, 1438832. https://doi.org/10.3389/FNUT.2024.1438832/BIBTEX
Allen, J., Sun, Y., & Woods, J. A. (2015). Exercise and the Regulation of Inflammatory Responses. Progress in Molecular Biology and Translational Science, 135, 337–354. https://doi.org/10.1016/BS.PMBTS.2015.07.003
Bennett, C. J., Henry, R., Snipe, R. M. J., & Costa, R. J. S. (2020). Is the gut microbiota bacterial abundance and composition associated with intestinal epithelial injury, systemic inflammatory profile, and gastrointestinal symptoms in response to exertional-heat stress? Journal of Science and Medicine in Sport, 23(12), 1141–1153. https://doi.org/10.1016/J.JSAMS.2020.06.002
Candelli, M., Franza, L., Pignataro, G., Ojetti, V., Covino, M., Piccioni, A., Gasbarrini, A., & Franceschi, F. (2021). Interaction between Lipopolysaccharide and Gut Microbiota in Inflammatory Bowel Diseases. International Journal of Molecular Sciences, 22(12). https://doi.org/10.3390/IJMS22126242
Carmichael, M. A., Roberts, A. H., Donaldson, A., & Clarke, A. C. (2024). Implementing menstrual cycle tracking: A pilot concept mapping study investigating considerations of coaches, support staff, and female athletes. Journal of Science and Medicine in Sport, 27(8), 557–564. https://doi.org/10.1016/J.JSAMS.2024.04.003
Chakaroun, R. M., Massier, L., & Kovacs, P. (2020). Gut Microbiome, Intestinal Permeability, and Tissue Bacteria in Metabolic Disease: Perpetrators or Bystanders? Nutrients, 12(4). https://doi.org/10.3390/NU12041082
Chen, Y., Yang, K., Xu, M., Zhang, Y., Weng, X., Luo, J., Li, Y., & Mao, Y. H. (2024). Dietary Patterns, Gut Microbiota and Sports Performance in Athletes: A Narrative Review. Nutrients 2024, Vol. 16, Page 1634, 16(11), 1634. https://doi.org/10.3390/NU16111634
Clauss, M., Gérard, P., Mosca, A., & Leclerc, M. (2021). Interplay Between Exercise and Gut Microbiome in the Context of Human Health and Performance. Frontiers in Nutrition, 8. https://doi.org/10.3389/FNUT.2021.637010
Freidenreich, D. J., & Volek, J. S. (2012). Immune responses to resistance exercise. Exerc Immunol Rev. https://pubmed.ncbi.nlm.nih.gov/22876721/
Fukui, H. (2016). Endotoxin and Other Microbial Translocation Markers in the Blood: A Clue to Understand Leaky Gut Syndrome. Cellular & Molecular Medicine: Open Access, 02(03). https://doi.org/10.21767/2573-5365.100023
Ghosh, S. S., Wang, J., Yannie, P. J., & Ghosh, S. (2020). Intestinal Barrier Dysfunction, LPS Translocation, and Disease Development. Journal of the Endocrine Society, 4(2). https://doi.org/10.1210/JENDSO/BVZ039
Goh, J., Niksirat, N., & Campbell, K. L. (2014). Exercise training and immune crosstalk in breast cancer microenvironment: exploring the paradigms of exercise-induced immune modulation and exercise-induced myokines. American Journal of Translational Research, 6(5), 422. https://pmc.ncbi.nlm.nih.gov/articles/PMC4212920/
Jäger, R., Heileson, J. L., Abou Sawan, S., Dickerson, B. L., Leonard, M., Kreider, R. B., Kerksick, C. M., Cornish, S. M., Candow, D. G., Cordingley, D. M., Forbes, S. C., Tinsley, G. M., Bongiovanni, T., Cannataro, R., Campbell, B. I., Arent, S. M., Stout, J. R., Kalman, D. S., & Antonio, J. (2025). International Society of Sports Nutrition Position Stand: Long-Chain Omega-3 Polyunsaturated Fatty Acids. Journal of the International Society of Sports Nutrition, 22(1), 2441775. https://doi.org/10.1080/15502783.2024.2441775
Madani, A., Alack, K., Richter, M. J., & Krüger, K. (2018). Immune-regulating effects of exercise on cigarette smoke-induced inflammation. Journal of Inflammation Research, 11, 155–167. https://doi.org/10.2147/JIR.S141149
Massier, L., Blüher, M., Kovacs, P., & Chakaroun, R. M. (2021). Impaired Intestinal Barrier and Tissue Bacteria: Pathomechanisms for Metabolic Diseases. Frontiers in Endocrinology, 12. https://doi.org/10.3389/FENDO.2021.616506
Miranda-Comas, G., Petering, R. C., Zaman, N., & Chang, R. (2022). Implications of the Gut Microbiome in Sports. Sports Health, 14(6), 894–898. https://doi.org/10.1177/19417381211060006
Mohammad, S., & Thiemermann, C. (2021). Role of Metabolic Endotoxemia in Systemic Inflammation and Potential Interventions. Frontiers in Immunology, 11. https://doi.org/10.3389/FIMMU.2020.594150
Mohr, A. E., Jäger, R., Carpenter, K. C., Kerksick, C. M., Purpura, M., Townsend, J. R., West, N. P., Black, K., Gleeson, M., Pyne, D. B., Wells, S. D., Arent, S. M., Kreider, R. B., Campbell, B. I., Bannock, L., Scheiman, J., Wissent, C. J., Pane, M., Kalman, D. S., … Antonio, J. (2020). The athletic gut microbiota. Journal of the International Society of Sports Nutrition, 17(1). https://doi.org/10.1186/S12970-020-00353-W
Peake, J. M., Neubauer, O., Gatta, P. A. D., & Nosaka, K. (2017). Muscle damage and inflammation during recovery from exercise. Journal of Applied Physiology (Bethesda, Md. : 1985), 122(3), 559–570. https://doi.org/10.1152/JAPPLPHYSIOL.00971.2016
Pedersen, B. K., & Hoffman-Goetz, L. (2000). Exercise and the Immune System: Regulation, Integration, and Adaptation. Https://Doi.Org/10.1152/Physrev.2000.80.3.1055, 80(3), 1055–1081. https://doi.org/10.1152/PHYSREV.2000.80.3.1055
Petersen, L. M., Bautista, E. J., Nguyen, H., Hanson, B. M., Chen, L., Lek, S. H., Sodergren, E., & Weinstock, G. M. (2017). Community characteristics of the gut microbiomes of competitive cyclists. Microbiome, 5(1), 1–13. https://doi.org/10.1186/S40168-017-0320-4/FIGURES/5
Rossi, F. E., De Freitas, M. C., Zanchi, N. E., Lira, F. S., & Cholewa, J. M. (2018). The role of inflammation and immune cells in blood flow restriction training adaptation: A review. Frontiers in Physiology, 9(OCT), 405478. https://doi.org/10.3389/FPHYS.2018.01376/BIBTEX
Scheffer, D. da L., & Latini, A. (2020). Exercise-induced immune system response: Anti-inflammatory status on peripheral and central organs. Biochimica et Biophysica Acta. Molecular Basis of Disease, 1866(10). https://doi.org/10.1016/J.BBADIS.2020.165823
Shephard, R. J. (2011). Immune changes induced by exercise in an adverse environment. Https://Doi.Org/10.1139/Y98-046, 76(5), 539–546. https://doi.org/10.1139/Y98-046
Suzuki, K., Tominaga, T., Ruhee, R. T., & Ma, S. (2020). Characterization and Modulation of Systemic Inflammatory Response to Exhaustive Exercise in Relation to Oxidative Stress. Antioxidants, 9(5), 401. https://doi.org/10.3390/ANTIOX9050401
Tariq, M., khan, H., Gulzar, M., Mir, D., kabir, K. N. ul huda, & Kousar, M. (2025). The Role of the Gut Microbiome in Immune Dysregulation and Pathogenesis of Inflammatory Bowel Disease: Microbial Dysbiosis in Inflammatory Bowel Disease. DEVELOPMENTAL MEDICO-LIFE-SCIENCES, 2(1), 13–25. https://doi.org/10.69750/DMLS.02.01.089
Vargas, A., Robinson, B. L., Houston, K., Rosa, A., Sangay, V., Saadeh, M., Souza, S. D’, & Johnson, D. A. (2025). Exploration of Medicine Gut microbiota-derived metabolites and chronic inflammatory diseases. Explor Med. https://doi.org/10.37349/emed.2025.1001275
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Stanisław Dudek, Weronika Koziak, Aleksandra Bętkowska, Agata Kornacka, Kamila Szostak, Rafał Tomaka, Michalina Makieła, Wojciech Dudek, Anna Byra

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 193
Number of citations: 0