Magnetic Vestibular Stimulation (MVS). A research tool with possible implementation in rehabilitation of stroke-affected athletes – a review
DOI:
https://doi.org/10.12775/QS.2025.38.58186Keywords
magnetic vestibular stimulation, vertigo, vestibulo-ocular reflex, Lorentz force, nystagmus, hemispatial neglect syndromeAbstract
Background: People often experience vertigo and other co-occurring effects caused by the action of a strong magnetic field, such as those found in the MRI generator. This effect is a result of vestibular stimulation of the inner ear, the mechanism being a magnetohydrodynamic force (Lorentz force) which is generated by the interaction between normal ionic currents in the endolymph of the inner ear and the strong magnetic fields of the static MRI devices. The result of the induction is magnetic vestibular stimulation (MVS).
Aim of the study: This study aims to present potential of MVS in research of vestibular function, hemispatial neglect syndrome (HNS) and rehabilitation.
Materials and Methods: PubMed and Google Scholar were searched using keywords including “magnetic vestibular stimulation”, “hemispatial neglect syndrome”, “caloric vestibular stimulation”, “galvanic vestibular stimulation”, “rehabilitation” in different combinations.
Materials and Methods: PubMed and Google Scholar were searched using keywords including “magnetic vestibular stimulation”, “hemispatial neglect syndrome”, “caloric vestibular stimulation”, “galvanic vestibular stimulation”, “rehabilitation” in different combinations.
Results: Several studies have been conducted using MVS, bringing new light to set-point adaptation of vestibular system. Moreover, MVS can induce spatial attention bias similar to HNS for at least one hour during session.
Conclusions: MVS is a novel tool with many possibilities in e.g. vestibular research. Apart from research, it may have great potential in rehabilitation of patients with HNS – which could be beneficial also for athletes affected by stroke.
References
[1] Ward BK, Otero-Millan J, Jareonsettasin P, Schubert MC, Roberts DC, Zee DS. Magnetic Vestibular Stimulation (MVS) As a Technique for Understanding the Normal and Diseased Labyrinth. Front Neurol. 2017;8:122. Published 2017 Apr 5. https://doi.org/10.3389/fneur.2017.00122
[2] Marcelli V, Esposito F, Aragri A, et al. Spatio-temporal pattern of vestibular information processing after brief caloric stimulation. Eur J Radiol. 2009;70(2):312-316. https://doi.org/10.1016/j.ejrad.2008.01.042
[3] Ward BK, Lee YH, Roberts DC, Naylor E, Migliaccio AA, Della Santina CC. Mouse Magnetic-field Nystagmus in Strong Static Magnetic Fields Is Dependent on the Presence of Nox3. Otol Neurotol. 2018;39(10):e1150-e1159. https://doi.org/10.1097/mao.0000000000002024
[4] Jareonsettasin P, Otero-Millan J, Ward BK, Roberts DC, Schubert MC, Zee DS. Multiple Time Courses of Vestibular Set-Point Adaptation Revealed by Sustained Magnetic Field Stimulation of the Labyrinth. Curr Biol. 2016;26(10):1359-1366. https://doi.org/10.1016/j.cub.2016.03.066
[5] Wyssen G, Morrison M, Korda A, et al. Measuring the Influence of Magnetic Vestibular Stimulation on Nystagmus, Self-Motion Perception, and Cognitive Performance in a 7T MRT. J Vis Exp. 2023;(193):10.3791/64022. Published 2023 Mar 3. https://doi.org/10.3791/64022
[6] Boegle R, Stephan T, Ertl M, Glasauer S, Dieterich M. Magnetic vestibular stimulation modulates default mode network fluctuations, NeuroImage. 2016;127: 409-421. https://doi.org/10.1016/j.neuroimage.2015.11.065.
[7] Boegle R, Ertl M, Stephan T, Dieterich M. Magnetic vestibular stimulation influences resting-state fluctuations and induces visual-vestibular biases. J Neurol. 2017;264(5):999-1001 https://doi.org/10.1007/s00415-017-8447-6
[8] Roberts DC, Marcelli V, Gillen JS, Carey JP, Della Santina CC, Zee DS. MRI magnetic field stimulates rotational sensors of the brain. Curr Biol. 2011;21(19):1635-1640. https://doi.org/10.1016/j.cub.2011.08.029
[9] Boegle R, Kirsch V, Gerb J, Dieterich M. Modulatory effects of magnetic vestibular stimulation on resting-state networks can be explained by subject-specific orientation of inner-ear anatomy in the MR static magnetic field. J Neurol. 2020;267(Suppl 1):91-103. https://doi.org/10.1007/s00415-020-09957-3
[10] Doyle-Baker PK, Mitchell T, Hayden KA. Stroke and Athletes: A Scoping Review. Int J Environ Res Public Health. 2021;18(19):10047. Published 2021 Sep 24. doi: https://doi.org/10.3390/ijerph181910047
[11] Moon S, Lee B, Na D. Therapeutic Effects of Caloric Stimulation and Optokinetic Stimulation on Hemispatial Neglect. J Clin Neurol. 2006 Mar;2(1):12-28. https://doi.org/10.3988/jcn.2006.2.1.12
[12] Rode G, Pagliari C, Huchon L, Rossetti Y, Pisella L. Semiology of neglect: an update. Annals of physical and rehabilitation medicine. 2017;60(3):177-185. https://doi.org/10.1016/j.rehab.2016.03.003
[13] Esposito E, Shekhtman G, Chen P. Prevalence of spatial neglect post-stroke: A systematic review. Ann Phys Rehabil Med. 2021;64(5):101459. https://doi.org/10.1016/j.rehab.2020.10.010
[14] Wilson B, Cockburn J, Halligan P. Development of a behavioral test of visuospatial neglect. Arch Phys Med Rehabil. 1987;68(2):98-102. PMID: 3813864
[15] Karnath HO, Sievering D, Fetter M. The interactive contribution of neck muscle proprioception and vestibular stimulation to subjective "straight ahead" orientation in man. Exp Brain Res. 1994;101(1):140-146. https://doi.org/10.1007/bf00243223
[16] Ferrè ER, Longo MR, Fiori F, Haggard P. Vestibular modulation of spatial perception. Front Hum Neurosci. 2013;7:660. Published 2013 Oct 10. https://doi.org/10.3389/fnhum.2013.00660
[17] Arai Y, Yakushin SB, Cohen B, Suzuki J, Raphan T. Spatial orientation of caloric nystagmus in semicircular canal-plugged monkeys. J Neurophysiol. 2002;88(2):914-928. https://doi.org/10.1152/jn.2002.88.2.914
[18] Fitzpatrick RC, Day BL. Probing the human vestibular system with galvanic stimulation. J Appl Physiol (1985). 2004;96(6):2301-2316. https://doi.org/10.1152/japplphysiol.00008.2004
[19] Smaczny S, Behle L, Kuppe S, Karnath HO, Lindner A. Sustained bias of spatial attention in a 3 T MRI scanner. Sci Rep. 2024;14(1):12657. Published 2024 Jun 3. https://doi.org/10.1038/s41598-024-62981-5
[20] Barrett AM. Spatial Neglect and Anosognosia After Right Brain Stroke. Continuum (Minneap Minn). 2021;27(6):1624-1645. https://doi.org/10.1212/con.0000000000001076
[21] Barrett AM, Houston KE. Update on the Clinical Approach to Spatial Neglect. Curr Neurol Neurosci Rep. 2019;19(5):25. Published 2019 Apr 4. https://doi.org/10.1007/s11910-019-0940-0
[22] Luauté J, Halligan P, Rode G, Rossetti Y, Boisson D. Visuo-spatial neglect: a systematic review of current interventions and their effectiveness. Neurosci Biobehav Rev. 2006;30(7):961-982. https://doi.org/10.1016/j.neubiorev.2006.03.001
[23] Singh NR, Leff AP. Advances in the Rehabilitation of Hemispatial Inattention. Curr Neurol Neurosci Rep. 2023;23(3):33-48. https://doi.org/10.1007/s11910-023-01252-8
[24] Geminiani G, Bottini G. Mental representation and temporary recovery from unilateral neglect after vestibular stimulation. J Neurol Neurosurg Psychiatry. 1992;55(4):332-333. https://doi.org/10.1136/jnnp.55.4.332-a
[25] Nakamura J, Kita Y, Ikuno K, Kojima K, Okada Y, Shomoto K. Influence of the stimulus parameters of galvanic vestibular stimulation on unilateral spatial neglect. Neuroreport. 2015;26(8):462-466. https://doi.org/10.1097/wnr.0000000000000369
[26] Wilkinson D, Zubko O, Sakel M, Coulton S, Higgins T, Pullicino P. Galvanic vestibular stimulation in hemi-spatial neglect. Front Integr Neurosci. 2014;8:4. Published 2014 Jan 29. https://doi.org/10.3389/fnint.2014.00004
[27] Wheeler C, Smith L J, Sakel M, Wilkinson D. A systematic review of vestibular stimulation in post-stroke visual neglect. Neuropsychological Rehabilitation, 2024;1–33. https://doi.org/10.1080/09602011.2024.2338603
[28] Lindner A, Wiesen D, Karnath HO. Lying in a 3T MRI scanner induces neglect-like spatial attention bias. Elife. 2021;10:e71076. Published 2021 Sep 29. https://doi.org/10.7554/eLife.71076
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Monika Olszanecka, Tomasz Olszanecki, Anna Hanslik, Agata Białek, Agnieszka Walczak, Magdalena Mendak

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 34
Number of citations: 0