The SGLT-2 Inhibitors and their Role in the Treatment of Heart Failure - A Review of Literature
DOI:
https://doi.org/10.12775/QS.2025.38.58178Keywords
SGLT2 inhibitors, Heart failure, benefits, cardiovascular effectsAbstract
- The purpose of research: Heart failure (HF) is an important global health concern. Despite advancements in treatment, HF remains the leading cause of hospitalization among the elderly. The development of sodium-glucose cotransporter 2 (SGLT2) inhibitors has shown promising cardiovascular and renal benefits beyond glucose control. This study aims to explore the potential mechanisms by which SGLT2 inhibitors provide cardiovascular protection, regardless of type 2 diabetes mellitus (T2DM).
- Research materials and methods: A comprehensive literature review was conducted, analyzing clinical trials, guideline documents, and mechanistic studies on SGLT2 inhibitors. Definitions and classifications of HF, risk factors, and cardiovascular effects of SGLT2 inhibitors were reviewed. Key studies such as EMPA-REG OUTCOME, DAPA-HF, and others were analyzed to identify mechanisms contributing to cardiovascular protection.
- Results: SGLT2 inhibitors provide cardiovascular benefits in HF patients, regardless of T2DM status. Key mechanisms include natriuresis, improved cardiac metabolism, reduced inflammation, prevention of cardiac remodeling, sympathetic inhibition, enhanced vascular health, and better kidney function.
- Conclusions: The benefits of SGLT2 inhibitors extend beyond glucose control. They provide various effects, including improved hemodynamics, reduced inflammation, and enhanced cardiac energy metabolism. While several mechanisms have been proposed, further research is necessary to rule which are most critical. The benefits observed with SGLT2 inhibitors stress their potential as a cornerstone in HF management, regardless of a patient’s diabetes status.
References
1. Braunwald E. The war against heart failure: The Lancet lecture. Vol. 385, The Lancet. 2015.
2. Lopaschuk GD, Verma S. Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: A State-of-the-Art Review. Vol. 5, JACC: Basic to Translational Science. 2020.
3. Bhatt DL, Verma S, Braunwald E. The DAPA-HF Trial: A Momentous Victory in the War against Heart Failure. Vol. 30, Cell Metabolism. 2019.
4. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. New England Journal of Medicine. 2019;380(24).
5. Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. The Lancet. 2019;393(10166).
6. McMurray J, Solomon S, Inzucchi S, Køber L, Kosiborod M, Martinez F, et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. The , (21), . https://doi.org/10.1056/NEJMoa1911303. New England journal of medicine. 2019;381(21).
7. Filippatos TD, Liontos A, Papakitsou I, Elisaf MS. SGLT2 inhibitors and cardioprotection: a matter of debate and multiple hypotheses. Vol. 131, Postgraduate Medicine. 2019.
8. Butler J, Handelsman Y, Bakris G, Verma S. Use of sodium–glucose co-transporter-2 inhibitors in patients with and without type 2 diabetes: implications for incident and prevalent heart failure. Vol. 22, European Journal of Heart Failure. 2020.
9. Staels B. Cardiovascular Protection by Sodium Glucose Cotransporter 2 Inhibitors: Potential Mechanisms. American Journal of Medicine. 2017;130(6).
10. Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Vol. 61, Diabetologia. 2018.
11. Bozkurt B, Coats AJ, Tsutsui H, Abdelhamid M, Adamopoulos S, Albert N, et al. Universal Definition and Classification of Heart Failure: A Report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. J Card Fail. 2021;27(4).
12. Braunwald E. Heart failure. Vol. 1, JACC: Heart Failure. Elsevier Inc.; 2013. p. 1–20.
13. Wagner S, Cohn K. Heart Failure: A Proposed Definition and Classification. Arch Intern Med. 1977;137(5).
14. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: A report of the american college of cardiology foundation/american heart association task force on practice guidelines. Circulation. 2013;128(16).
15. Zou C, Zhang J. Interpretation of 2023 ESC focused update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Chinese Journal of Cardiology. 2023;51(12).
16. Caraballo C, Desai NR, Mulder H, Alhanti B, Wilson FP, Fiuzat M, et al. Clinical Implications of the New York Heart Association Classification. J Am Heart Assoc. 2019;8(23).
17. Ahmed A, Aronow WS, Fleg JL. Higher New York Heart Association classes and increased mortality and hospitalization in patients with heart failure and preserved left ventricular function. Am Heart J. 2006;151(2).
18. Felker GM, Thompson RE, Hare JM, Hruban RH, Clemetson DE, Howard DL, et al. Underlying Causes and Long-Term Survival in Patients with Initially Unexplained Cardiomyopathy. New England Journal of Medicine. 2000;342(15).
19. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Vol. 145, Circulation. 2022.
20. Fonarow GC. Refining Classification of Heart Failure Based on Ejection Fraction. Vol. 5, JACC: Heart Failure. 2017.
21. Fedele F, Severino P, Calcagno S, Mancone M. Heart failure: TNM-like classification. Vol. 63, Journal of the American College of Cardiology. 2014.
22. Fedele F, Gatto MC, D’Ambrosi A, Mancone M. TNM-like classification: A new proposed method for heart failure staging. Vol. 2013, The Scientific World Journal. 2013.
23. Arbustini E, Narula N, Dec GW, Reddy KS, Greenberg B, Kushwaha S, et al. The MOGE(S) classification for a phenotype-genotype nomenclature of cardiomyopathy: Endorsed by the world heart federation. Glob Heart. 2013;8(4).
24. Khatibzadeh S, Farzadfar F, Oliver J, Ezzati M, Moran A. Worldwide risk factors for heart failure: A systematic review and pooled analysis. Int J Cardiol. 2013;168(2).
25. Dunlay SM, Weston SA, Jacobsen SJ, Roger VL. Risk Factors for Heart Failure: A Population-Based Case-Control Study. American Journal of Medicine. 2009;122(11).
26. Horwich TB, Fonarow GC. Glucose, Obesity, Metabolic Syndrome, and Diabetes. Relevance to Incidence of Heart Failure. Vol. 55, Journal of the American College of Cardiology. 2010.
27. Avery CL, Loehr LR, Baggett C, Chang PP, Kucharska-Newton AM, Matsushita K, et al. The population burden of heart failure attributable to modifiable risk factors: The ARIC (atherosclerosis risk in communities) study. J Am Coll Cardiol. 2012;60(17).
28. Bibbins-Domingo K, Lin F, Vittinghoff E, Barrett-Connor E, Hulley SB, Grady D, et al. Predictors of heart failure among women with coronary disease. Circulation. 2004;110(11).
29. Tromp J, Paniagua SMA, Lau ES, Allen NB, Blaha MJ, Gansevoort RT, et al. Age dependent associations of risk factors with heart failure: Pooled population based cohort study. The BMJ. 2021;372.
30. He J, Shlipak M, Anderson A, Roy JA, Feldman HI, Kallem RR, et al. Risk factors for heart failure in patients with chronic kidney disease: The CRIC (Chronic Renal Insufficiency Cohort) study. J Am Heart Assoc. 2017;6(5).
31. Chae CU, Albert CM, Glynn RJ, Guralnik JM, Curhan GC. Mild renal insufficiency and risk of congestive heart failure in men and women ≥70 years of age. American Journal of Cardiology. 2003;92(6).
32. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. New England Journal of Medicine. 2017;377(7).
33. Mazidi M, Rezaie P, Gao HK, Kengne AP. Effect of sodium-glucose cotransport-2 inhibitors on blood pressure in people with type 2 diabetes mellitus: A systematic review and meta-analysis of 43 randomized control trials with 22 528 patients. J Am Heart Assoc. 2017;6(6).
34. Weber MA, Mansfield TA, Cain VA, Iqbal N, Parikh S, Ptaszynska A. Blood pressure and glycaemic effects of dapagliflozin versus placebo in patients with type 2 diabetes on combination antihypertensive therapy: A randomised, double-blind, placebo-controlled, phase 3 study. Lancet Diabetes Endocrinol. 2016;4(3).
35. Kario K, Böhm M, Mahfoud F, Townsend RR, Weber MA, Patel M, et al. Twenty-four-hour ambulatory blood pressure reduction patterns after renal denervation in the SPYRAL HTN-OFF MED trial. Circulation. 2018;138(15).
36. Steiner S. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. Vol. 13, Zeitschrift fur Gefassmedizin. 2016.
37. Lambers Heerspink HJ, De Zeeuw D, Wie L, Leslie B, List J. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab. 2013;15(9).
38. Hallow KM, Helmlinger G, Greasley PJ, McMurray JJV, Boulton DW. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Vol. 20, Diabetes, Obesity and Metabolism. 2018.
39. Lopaschuk GD, Ussher JR, Folmes CDL, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Vol. 90, Physiological Reviews. 2010.
40. Al Jobori H, Daniele G, Adams J, Cersosimo E, Triplitt C, DeFronzo RA, et al. Determinants of the increase in ketone concentration during SGLT2 inhibition in NGT, IFG and T2DM patients. Diabetes Obes Metab. 2017;19(6).
41. Ferrannini E, Baldi S, Frascerra S, Astiarraga B, Heise T, Bizzotto R, et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes. 2016;65(5).
42. Aubert G, Martin OJ, Horton JL, Lai L, Vega RB, Leone TC, et al. The Failing Heart Relies on Ketone Bodies as a Fuel. Circulation. 2016;133(8).
43. Ho KL, Zhang L, Wagg C, Al Batran R, Gopal K, Levasseur J, et al. Increased ketone body oxidation provides additional energy for the failing heart without improving cardiac efficiency. Cardiovasc Res. 2019;115(11).
44. Lopaschuk GD, Verma S. Empagliflozin’s Fuel Hypothesis: Not so Soon. Vol. 24, Cell Metabolism. 2016.
45. Dick SA, Epelman S. Chronic Heart Failure and Inflammation: What Do We Really Know? Circ Res. 2016;119(1).
46. Mehta JL, Pothineni NVK. Inflammation in Heart Failure: The Holy Grail? Vol. 68, Hypertension. 2016.
47. Briasoulis A, Androulakis E, Christophides T, Tousoulis D. The role of inflammation and cell death in the pathogenesis, progression and treatment of heart failure. Heart Fail Rev. 2016;21(2).
48. Leng W, Wu M, Pan H, Lei X, Chen L, Wu Q, et al. The SGLT2 inhibitor dapagliflozin attenuates the activity of ROS-NLRP3 inflammasome axis in steatohepatitis with diabetes mellitus. Ann Transl Med. 2019;7(18).
49. Heerspink HJL, Perco P, Mulder S, Leierer J, Hansen MK, Heinzel A, et al. Canagliflozin reduces inflammation and fibrosis biomarkers: a potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia. 2019;62(7).
50. Iannantuoni F, de Marañon AM, Diaz-Morales N, Falcon R, Bañuls C, Abad-Jimenez Z, et al. The SGLT2 inhibitor empagliflozin ameliorates the inflammatory profile in type 2 diabetic patients and promotes an antioxidant response in leukocytes. J Clin Med. 2019;8(11).
51. Lee TM, Chang NC, Lin SZ. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic Biol Med. 2017;104.
52. Butts B, Gary RA, Dunbar SB, Butler J. The Importance of NLRP3 Inflammasome in Heart Failure. Vol. 21, Journal of Cardiac Failure. 2015.
53. Grubić Rotkvić P, Cigrovski Berković M, Bulj N, Rotkvić L. Minireview: are SGLT2 inhibitors heart savers in diabetes? Vol. 25, Heart Failure Reviews. 2020.
54. Jordan J, Tank J, Heusser K, Heise T, Wanner C, Heer M, et al. The effect of empagliflozin on muscle sympathetic nerve activity in patients with type II diabetes mellitus. Journal of the American Society of Hypertension. 2017;11(9).
55. Yoshikawa T, Kishi T, Shinohara K, Takesue K, Shibata R, Sonoda N, et al. Arterial pressure lability is improved by sodium-glucose cotransporter 2 inhibitor in streptozotocin-induced diabetic rats. Hypertension Research. 2017;40(7).
56. Chiba Y, Yamada T, Tsukita S, Takahashi K, Munakata Y, Shirai Y, et al. Dapagliflozin, a sodium-glucose co-transporter 2 inhibitor, acutely reduces energy expenditure in BAT via neural signals in mice. PLoS One. 2016;11(3).
57. Verma S, Garg A, Yan AT, Gupta AK, Al-Omran M, Sabongui A, et al. Effect of empagliflozin on left ventricular mass and diastolic function in individuals with diabetes: An important clue to the EMPA-REG OUTCOME trial? Vol. 39, Diabetes Care. 2016.
58. Kang S, Verma S, Hassanabad AF, Teng G, Belke DD, Dundas JA, et al. Direct Effects of Empagliflozin on Extracellular Matrix Remodelling in Human Cardiac Myofibroblasts: Novel Translational Clues to Explain EMPA-REG OUTCOME Results. Canadian Journal of Cardiology. 2020;36(4).
59. Esterline RL, Vaag A, Oscarsson J, Vora J. MECHANISMS IN ENDOCRINOLOGY: SGLT2 inhibitors: clinical benefits by restoration of normal diurnal metabolism? Eur J Endocrinol. 2018;178(4).
60. Iborra-Egea O, Santiago-Vacas E, Yurista SR, Lupón J, Packer M, Heymans S, et al. Unraveling the Molecular Mechanism of Action of Empagliflozin in Heart Failure With Reduced Ejection Fraction With or Without Diabetes. JACC Basic Transl Sci. 2019;4(7).
61. Sato T, Aizawa Y, Yuasa S, Kishi S, Fuse K, Fujita S, et al. The effect of dapagliflozin treatment on epicardial adipose tissue volume. Cardiovasc Diabetol. 2018;17(1).
62. Sano M, Takei M, Shiraishi Y, Suzuki Y. Increased Hematocrit During Sodium-Glucose Cotransporter 2 Inhibitor Therapy Indicates Recovery of Tubulointerstitial Function in Diabetic Kidneys. J Clin Med Res. 2016;8(12).
63. Mazer CD, Hare GMT, Connelly PW, Gilbert RE, Shehata N, Quan A, et al. Effect of Empagliflozin on Erythropoietin Levels, Iron Stores, and Red Blood Cell Morphology in Patients With Type 2 Diabetes Mellitus and Coronary Artery Disease. Vol. 141, Circulation. 2020.
64. Hess DA, Terenzi DC, Trac JZ, Quan A, Mason T, Al-Omran M, et al. SGLT2 Inhibition with Empagliflozin Increases Circulating Provascular Progenitor Cells in People with Type 2 Diabetes Mellitus. Vol. 30, Cell Metabolism. 2019.
65. Uthman L, Homayr A, Juni RP, Spin EL, Kerindongo R, Boomsma M, et al. Empagliflozin and dapagliflozin reduce ROS generation and restore no bioavailability in tumor necrosis factor α-stimulated human coronary arterial endothelial cells. Cellular Physiology and Biochemistry. 2019;53(5).
66. Patel AR, Kuvin JT, Pandian NG, Smith JJ, Udelson JE, Mendelsohn ME, et al. Heart failure etiology affects peripheral vascular endothelial function after cardiac transplantation. J Am Coll Cardiol. 2001;37(1).
67. Gaspari T, Spizzo I, Liu H Bin, Hu Y, Simpson RW, Widdop RE, et al. Dapagliflozin attenuates human vascular endothelial cell activation and induces vasorelaxation: A potential mechanism for inhibition of atherogenesis. Diab Vasc Dis Res. 2018;15(1).
68. Li H, Shin SE, Seo MS, An JR, Choi IW, Jung WK, et al. The anti-diabetic drug dapagliflozin induces vasodilation via activation of PKG and Kv channels. Life Sci. 2018;197
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Silvia Ciraolo, Agnieszka Kulczycka-Rowicka, Joanna Wojda, Katarzyna Lesiczka-Fedoryj, Anna Walczak, Zuzanna Kościuszko, Adam Sobiński, Matylda Czerwonka, Katarzyna Kurza, Julianna Podolec

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 76
Number of citations: 0