Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Quality in Sport

Genetic technology in the targeted therapy of Alport Syndrome
  • Home
  • /
  • Genetic technology in the targeted therapy of Alport Syndrome
  1. Home /
  2. Archives /
  3. Vol. 38 (2025) /
  4. Medical Sciences

Genetic technology in the targeted therapy of Alport Syndrome

Authors

  • Magdalena Kłusek Medical University of Lublin, Poland https://orcid.org/0009-0001-8055-6054
  • Bartosz Pawłowski University Clinical Hospital No. 4 in Lublin, Doktora Kazimierza Jaczewskiego Street 8, 20-954 Lublin https://orcid.org/0009-0009-3515-1777
  • Michał Sienkiewicz Regional Specialist Hospital in Biała Podlaska Terebelska Street 57/65, 21-500 Biała Podlaska https://orcid.org/0009-0001-0427-9198
  • Anna Mandziuk Military Institute of Medicine, Szaserów Street 128, 04-141 Warszawa https://orcid.org/0009-0006-6431-2646

DOI:

https://doi.org/10.12775/QS.2025.38.57941

Keywords

Alport, syndrome, genetic, therapy, CRISPR/Cas9, exon-skipping, premature termination codon readthrough, anti-miRNA-21 oligonucleotides, protein replacement, pharmacological chaperones, X-chromosome

Abstract

Introduction and aim of the study: Alport syndrome is the most common inherited chronic kidney disease, with three distinct patterns of inheritance: X-linked, autosomal, and digenic. Currently, there is no curative treatment for Alport syndrome. This review aims to provide updated knowledge about Alport syndrome, including its clinical and genetic characteristics and therapies that slow disease progression. 

Material and Methods: A systematic literature search was conducted using PubMed and Google Scholar, with the following keywords: "gene," "therapy," "Alport," and "syndrome."

Description of the state of knowledge: Gene therapy, which uses genetic material to prevent or treat diseases, offers promising prospects for Alport syndrome.  The results of the metaanalysis suggest that gene editing by CRISPR/Cas9, exon-skipping using an antisense-oligonucleotide, premature termination codon readthrough, anti-miRNA-21 oligonucleotides, protein replacement, pharmacological chaperones and X-chromosome reactivation therapies are a feasible approach for some patients with Alport syndrome.

Summary: Targeting defective collagen chains early in the disease through gene therapy may have the greatest potential to reverse this disorder. Therefore, we strongly believe Alport syndrome will become a treatable condition in the near future using gene editing techniques.

References

1. Daga S, Ding J, Deltas C, et al. The 2019 and 2021 International Workshops on Alport Syndrome [published correction appears in Eur J Hum Genet. 2024 Jan;32(1):130. https://doi.org/10.1038/s41431-023-01286-z]. Eur J Hum Genet. 2022;30(5):507-516. https://doi.org/10.1038/s41431-022-01075-0

2. THE VOICE OF THE PATIENT Externally Led Patient–Focused Drug Development

Meeting on Alport Syndrome. Submitted as patient experience data for consideration Pursuant to section 569C of the Federal Food, Drug, and Cosmetic Act to: Center for Drug Evaluation and Research (CDER) U.S. Food and Drug Administration (FDA). This report reflects the National Kidney Foundation’s and Alport Syndrome Foundation’s accounts of the perspectives of patients and caregivers who participated in an Externally Led Patient-Focused Drug Development Meeting, an effort to support the FDA’s Patient-Focused Drug Development Initiative. Public Meeting: August 3, 2018. Report Date: November 1, 2019.

Accessed July 23, 2023. https://www.kidney.org/sites/default/files/vop_alport-syndrome_20191101.pdf

3. Help for children with kidney disease. Video portrait by the German Ministry of Education and Research, BMBF. Accessed July 23, 2023.

https://www.gesundheitsforschung-bmbf.de/de/videoportrait-hilfe-fur-nierenkranke-kinder-14890.php

4. Yamamura T, Horinouchi T, Nagano C, et al. Genotype-phenotype correlations influence the response to angiotensin-targeting drugs in Japanese patients with male X-linked Alport syndrome. Kidney Int. 2020;98(6):1605-1614. doi:10.1016/j.kint.2020.06.038

5. Chavez E, Rodriguez J, Drexler Y, Fornoni A. Novel Therapies for Alport Syndrome.

Front Med (Lausanne). 2022;9:848389. Published 2022 Apr 25.

https://doi.org/10.3389/fmed.2022.848389

6. Boeckhaus J, Hoefele J, Riedhammer KM, et al. Lifelong effect of therapy in young

patients with the COL4A5 Alport missense variant p.(Gly624Asp): a prospective cohort study. Nephrol Dial Transplant. 2022;37(12):2496-2504. https://doi.org/10.1093/ndt/gfac006

7. Gibson JT, Huang M, Shenelli Croos Dabrera M, et al. Genotype-phenotype correlations for COL4A3-COL4A5 variants resulting in Gly substitutions in Alport syndrome. Sci Rep. 2022;12(1):2722. Published 2022 Feb 17. doi:10.1038/s41598-022-06525-9

8. Nozu K, Nakanishi K, Abe Y, et al. A review of clinical characteristics and genetic backgrounds in Alport syndrome. Clin Exp Nephrol. 2019;23(2):158-168. doi:10.1007/s10157-018-1629-4

9. Warady BA, Agarwal R, Bangalore S, et al. Alport Syndrome Classification and Management. Kidney Med. 2020;2(5):639-649. Published 2020 Aug 7. doi:10.1016/j.xkme.2020.05.014

10. Mahrous NN, Jamous YF, Almatrafi AM, et al. A Current Landscape on Alport Syndrome Cases: Characterization, Therapy and Management Perspectives. Biomedicines. 2023;11(10):2762. Published 2023 Oct 12. doi:10.3390/biomedicines11102762

11. Namba M, Kobayashi T, Kohno M, et al. Creation of X-linked Alport syndrome rat model with Col4a5 deficiency [published correction appears in Sci Rep. 2021 Nov 8;11(1):22137. doi: 10.1038/s41598-021-01409-w]. Sci Rep. 2021;11(1):20836. Published 2021 Oct 21. doi:10.1038/s41598-021-00354-y

12. Zhao X, Shang X, Chen C, et al. Identification of four novel mutations in the COL4A5 gene identified in Chinese patients with X-linked Alport syndrome. Biomed Rep. 2020;13(2):4. doi:10.3892/br.2020.1311

13. Kamura M, Yamamura T, Omachi K, et al. Trimerization and Genotype-Phenotype Correlation of COL4A5 Mutants in Alport Syndrome. Kidney Int Rep. 2020;5(5):718-726. Published 2020 Jan 30. doi:10.1016/j.ekir.2020.01.008

14. Kashtan CE. Alport Syndrome: Achieving Early Diagnosis and Treatment. Am J Kidney Dis. 2021;77(2):272-279. doi:10.1053/j.ajkd.2020.03.026

15. Chakravarti S, Enzo E, Rocha Monteiro de Barros M, Maffezzoni MBR, Pellegrini G. Genetic Disorders of the Extracellular Matrix: From Cell and Gene Therapy to Future Applications in Regenerative Medicine. Annu Rev Genomics Hum Genet. 2022;23:193-222. doi:10.1146/annurev-genom-083117-021702

16. Boeckhaus J, Hoefele J, Riedhammer KM, et al. Precise variant interpretation, phenotype ascertainment, and genotype-phenotype correlation of children in the EARLY PRO-TECT Alport trial. Clin Genet. 2021;99(1):143-156. doi:10.1111/cge.13861

17. Hadjipanagi D, Papagregoriou G, Koutsofti C, et al. Novel and Founder Pathogenic Variants in X-Linked Alport Syndrome Families in Greece. Genes (Basel). 2022;13(12):2203. Published 2022 Nov 24. doi:10.3390/genes13122203

18. KDIGO Conference Participants. Genetics in chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2022;101(6):1126-1141. doi:10.1016/j.kint.2022.03.019

19. Gomes AM, Lopes D, Almeida C, et al. Potential Renal Damage Biomarkers in Alport Syndrome-A Review of the Literature. Int J Mol Sci. 2022;23(13):7276. Published 2022 Jun 30. doi:10.3390/ijms23137276

20. Oda Y, Sawa N, Nozu K, Ubara Y. Refractory focal segmental glomerulosclerosis caused by Alport syndrome detected by genetic testing after three decades. BMJ Case Rep. 2022;15(3):e247393. Published 2022 Mar 14. doi:10.1136/bcr-2021-247393

21. Kashtan CE, Ding J, Garosi G, et al. Alport syndrome: a unified classification of genetic disorders of collagen IV α345: a position paper of the Alport Syndrome Classification Working Group. Kidney Int. 2018;93(5):1045-1051. doi:10.1016/j.kint.2017.12.018

22. Yamamura T, Nozu K, Fu XJ, et al. Natural History and Genotype-Phenotype Correlation in Female X-Linked Alport Syndrome. Kidney Int Rep. 2017;2(5):850-855. Published 2017 May 4. doi:10.1016/j.ekir.2017.04.011

23. Kashtan CE, Ding J, Gregory M, et al. Clinical practice recommendations for the treatment of Alport syndrome: a statement of the Alport Syndrome Research Collaborative. Pediatr Nephrol. 2013;28(1):5-11. doi:10.1007/s00467-012-2138-4

24. Mabillard H, Sayer JA. SGLT2 inhibitors - a potential treatment for Alport syndrome. Clin Sci (Lond). 2020;134(4):379-388. doi:10.1042/CS20191276

25. Howard M, Frizzell RA, Bedwell DM. Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat Med. 1996;2(4):467-469. doi:10.1038/nm0496-467

26. Boels MG, Avramut MC, Koudijs A, et al. Atrasentan Reduces Albuminuria by Restoring the Glomerular Endothelial Glycocalyx Barrier in Diabetic Nephropathy. Diabetes. 2016;65(8):2429-2439. doi:10.2337/db15-1413

27. Pedigo CE, Ducasa GM, Leclercq F, et al. Local TNF causes NFATc1-dependent cholesterol-mediated podocyte injury. J Clin Invest. 2016;126(9):3336-3350. doi:10.1172/JCI85939

28. Sun L, Kuang XY, Zhang J, Huang WY. Hydroxychloroquine Ameliorates Hematuria in Children with X-Linked Alport Syndrome: Retrospective Case Series Study. Pharmgenomics Pers Med. 2023;16:145-151. Published 2023 Feb 25. doi:10.2147/PGPM.S394290

29. Guo J, Song W, Boulanger J, et al. Dysregulated Expression of microRNA-21 and Disease-Related Genes in Human Patients and in a Mouse Model of Alport Syndrome. Hum Gene Ther. 2019;30(7):865-881. doi:10.1089/hum.2018.205

30. Chertow GM, Appel GB, Andreoli S, et al. Study Design and Baseline Characteristics of the CARDINAL Trial: A Phase 3 Study of Bardoxolone Methyl in Patients with Alport Syndrome. Am J Nephrol. 2021;52(3):180-189. doi:10.1159/000513777

31. Kumar SR, Markusic DM, Biswas M, High KA, Herzog RW. Clinical development of gene therapy: results and lessons from recent successes. Mol Ther Methods Clin Dev. 2016;3:16034. Published 2016 May 25. doi:10.1038/mtm.2016.34

32. Hawsawi YM, Shams A, Theyab A, et al. The State-of-the-Art of Gene Editing and its Application to Viral Infections and Diseases Including COVID-19. Front Cell Infect Microbiol. 2022;12:869889. Published 2022 Jun 9. doi:10.3389/fcimb.2022.869889

33. Cox DB, Platt RJ, Zhang F. Therapeutic genome editing: prospects and challenges. Nat Med. 2015;21(2):121-131. doi:10.1038/nm.3793 34. Quinlan C, Rheault MN. Genetic Basis of Type IV Collagen Disorders of the Kidney. Clin J Am Soc Nephrol. 2021;16(7):1101-1109. doi:10.2215/CJN.19171220

35. Zhao Y, Zheng Q, Xie J. Exploration of Gene Therapy for Alport Syndrome. Biomedicines. 2024;12(6):1159. Published 2024 May 23. doi:10.3390/biomedicines12061159

36. Karginov FV, Hannon GJ. The CRISPR system: small RNA-guided defense in bacteria and archaea. Mol Cell. 2010;37(1):7-19. doi:10.1016/j.molcel.2009.12.033

37. Casini A, Olivieri M, Petris G, et al. A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nat Biotechnol. 2018;36(3):265-271. doi:10.1038/nbt.4066

38. Lee J, Jung MH, Jeong E, Lee JK. Using Sniper-Cas9 to Minimize Off-target Effects of CRISPR-Cas9 Without the Loss of On-target Activity Via Directed Evolution. J Vis Exp. 2019;(144):10.3791/59202. Published 2019 Feb 26. doi:10.3791/59202

39. WareJoncas Z, Campbell JM, Martínez-Gálvez G, et al. Precision gene editing technology and applications in nephrology. Nat Rev Nephrol. 2018;14(11):663-677. doi:10.1038/s41581-018-0047-x

40. Daga S, Donati F, Capitani K, et al. New frontiers to cure Alport syndrome: COL4A3 and COL4A5 gene editing in podocyte-lineage cells [published correction appears in Eur J Hum Genet. 2024 Jan;32(1):131. doi: 10.1038/s41431-023-01287-y]. Eur J Hum Genet. 2020;28(4):480-490. doi:10.1038/s41431-019-0537-8

41. Omachi K, Miner JF. Comparative analysis and rational design of dCas9-VP64

variants for CRISPR activation. bioRxiv. 2021. https://doi.org/10.1101/ 2021.08.13.456279.

42. Lin X, Suh JH, Go G, Miner JH. Feasibility of repairing glomerular basement membrane defects in Alport syndrome. J Am Soc Nephrol. 2014;25(4):687-692. doi:10.1681/ASN.2013070798

43. Funk SD, Bayer RH, Miner JH. Endothelial cell-specific collagen type IV-α3 expression does not rescue Alport syndrome in Col4a3-/- mice. Am J Physiol Renal Physiol. 2019;316(5):F830-F837. doi:10.1152/ajprenal.00556.2018

44. Yamamura T, Horinouchi T, Adachi T, et al. Development of an exon skipping therapy for X-linked Alport syndrome with truncating variants in COL4A5. Nat Commun. 2020;11(1):2777. Published 2020 Jun 2. doi:10.1038/s41467-020-16605-x

45. Yabuuchi K, Horinouchi T, Yamamura T, Nozu K, Takasato M. Investigation of exon skipping therapy in kidney organoids from Alport syndrome patients derived iPSCs. Genes Cells. 2024;29(12):1118-1130. doi:10.1111/gtc.13170

46. Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203-222. doi:10.1038/nrd.2016.246

47. Gomez IG, MacKenna DA, Johnson BG, et al. Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways. J Clin Invest. 2015;125(1):141-156. doi:10.1172/JCI75852

48. Rubel D, Boulanger J, Craciun F, et al. Anti-microRNA-21 Therapy on Top of ACE Inhibition Delays Renal Failure in Alport Syndrome Mouse Models. Cells. 2022;11(4):594. Published 2022 Feb 9. doi:10.3390/cells11040594

49. Lin MH, Miller JB, Kikkawa Y, Suleiman HY, Tryggvason K, Hodges BL, Miner JH. Laminin-521 Protein Therapy for Glomerular Basement Membrane and Podocyte Abnormalities in a Model of Pierson Syndrome. J Am Soc Nephrol. 2018 May;29(5):1426-1436. doi: 10.1681/ASN.2017060690. Epub 2018 Feb 22. PMID: 29472414; PMCID: PMC5967757.

50. Boudko SP, Bauer R, Chetyrkin SV, Ivanov S, Smith J, Voziyan PA, Hudson BG. Collagen IVα345 dysfunction in glomerular basement membrane diseases. II. Crystal structure of the α345 hexamer. J Biol Chem. 2021 Jan-Jun;296:100591. doi: 10.1016/j.jbc.2021.100591. Epub 2021 Mar 26. PMID: 33775698; PMCID: PMC8093946.

51. Pedchenko V, Boudko SP, Barber M, Mikhailova T, Saus J, Harmange JC, Hudson BG. Collagen IVα345 dysfunction in glomerular basement membrane diseases. III. A functional framework for α345 hexamer assembly. J Biol Chem. 2021 Jan-Jun;296:100592. doi: 10.1016/j.jbc.2021.100592. Epub 2021 Mar 26. PMID: 33775696; PMCID: PMC8099640

52. Tran ML, Génisson Y, Ballereau S, Dehoux C. Second-Generation Pharmacological Chaperones: Beyond Inhibitors. Molecules. 2020 Jul 9;25(14):3145. doi: 10.3390/molecules25143145. PMID: 32660097; PMCID: PMC7397201.

53. Petropoulos S, Edsgärd D, Reinius B, et al. Single-Cell RNA-Seq Reveals Lineage and X Chromosome Dynamics in Human Preimplantation Embryos [published correction appears in Cell. 2016 Sep 22;167(1):285. doi: 10.1016/j.cell.2016.08.009]. Cell. 2016;165(4):1012-1026. doi:10.1016/j.cell.2016.03.023

54. Li X, Le Y, Zhang Z, Nian X, Liu B, Yang X. Viral Vector-Based Gene Therapy. Int J Mol Sci. 2023;24(9):7736. Published 2023 Apr 23. doi:10.3390/ijms24097736

55. Peek JL, Wilson MH. Cell and gene therapy for kidney disease. Nat Rev Nephrol. 2023;19(7):451-462. doi:10.1038/s41581-023-00702-3 56. Ding WY, Kuzmuk V, Hunter S, et al. Adeno-associated virus gene therapy prevents progression of kidney disease in genetic models of nephrotic syndrome. Sci Transl Med. 2023;15(708):eabc8226. doi:10.1126/scitranslmed.abc8226

57. Riedmayr LM, Hinrichsmeyer KS, Thalhammer SB, et al. mRNA trans-splicing dual AAV vectors for (epi)genome editing and gene therapy. Nat Commun. 2023;14(1):6578. Published 2023 Oct 18. doi:10.1038/s41467-023-42386-0

58. Tang H, Wang H, Wang S, et al. Hearing of Otof-deficient mice restored by trans-splicing of N- and C-terminal otoferlin. Hum Genet. 2023;142(2):289-304. doi:10.1007/s00439-022-02504-2

59. Qi J, Tan F, Zhang L, et al. AAV-Mediated Gene Therapy Restores Hearing in Patients with DFNB9 Deafness. Adv Sci (Weinh). 2024;11(11):e2306788. doi:10.1002/advs.202306788

60. Lv J, Wang H, Cheng X, et al. AAV1-hOTOF gene therapy for autosomal recessive deafness 9: a single-arm trial [published correction appears in Lancet. 2024 May 25;403(10441):2292. doi: 10.1016/S0140-6736(24)01040-7]. Lancet. 2024;403(10441):2317-2325. doi:10.1016/S0140-6736(23)02874-X

Downloads

  • PDF

Published

2025-02-13

How to Cite

1.
KŁUSEK, Magdalena, PAWŁOWSKI, Bartosz, SIENKIEWICZ, Michał and MANDZIUK, Anna. Genetic technology in the targeted therapy of Alport Syndrome. Quality in Sport. Online. 13 February 2025. Vol. 38, p. 57941. [Accessed 16 June 2025]. DOI 10.12775/QS.2025.38.57941.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 38 (2025)

Section

Medical Sciences

License

Copyright (c) 2025 Magdalena Kłusek, Bartosz Pawłowski, Michał Sienkiewicz, Anna Mandziuk

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats

Number of views and downloads: 293
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

Alport, syndrome, genetic, therapy, CRISPR/Cas9, exon-skipping, premature termination codon readthrough, anti-miRNA-21 oligonucleotides, protein replacement, pharmacological chaperones, X-chromosome
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop