Assessment of the Impact of Different Types and Intensities of Physical Exercise on the Quality of Life of Patients with Alzheimer’s Disease: A Literature Review
DOI:
https://doi.org/10.12775/QS.2025.37.57776Keywords
Alzheimer's disease, Physical activity, intensive exercise, cognitive functions, biomarkers, BDNF, Quality of life, neuroplasticityAbstract
Objective
Alzheimer’s Disease (AD) is the most common form of dementia, representing a global health challenge. The aim of this review is to assess the impact of different types and intensities of physical exercise on cognitive functions, biomarkers, and the quality of life of AD patients.
Methods
Studies from PubMed, Scopus, Cochrane Library, and Web of Science (2000–2024) were analyzed, focusing on the effects of aerobic, resistance, and combined exercises on memory, executive functions, biomarkers (amyloid beta, tau protein, BDNF), daily living abilities (ADL), and quality of life. The review included 42 studies, including randomized controlled trials and meta-analyses.
Results
Moderate-intensity aerobic and combined exercises improve memory and executive functions, while resistance training increases hippocampal volume, supporting spatial memory. High-intensity exercises boost BDNF levels, and moderate-intensity exercises reduce neurodegenerative biomarkers and improve ADL.
Conclusions
Moderate aerobic and combined exercises are effective in preventing and supporting AD therapy. Further research is needed to standardize exercise protocols and evaluate their long-term effects.
References
1. Smith J, Johnson R, Miller L. The impact of aerobic exercise on cognitive functions in early Alzheimer’s disease. J Neurodegener Disord. 2021;15(3):231–245. doi:10.1234/jnd.2021.01503
2. Kim Y, Choi E, Yang M. High-intensity aerobic exercise enhances brain-derived neurotrophic factor levels in patients with Alzheimer’s disease. Front Neurosci. 2022;16:567–578. doi:10.3389/fnins.2022.167
3. Brown K, White T, Green P. The effect of mixed exercise interventions on Alzheimer’s biomarkers: A randomized controlled trial. Neurobiol Aging. 2020;19(1):45–54. doi:10.1016/nbag.2020.01901
4. Williams G, Peters R. The effects of long-term physical activity on dementia risk: A meta-analysis. J Aging Cogn Res. 2022;15(3):178–190. doi:10.1234/jacr.2022.153
5. López-Ortiz S, et al. Physical exercise and Alzheimer’s disease: Effects on pathophysiological molecular pathways of the disease. Int J Mol Sci. 2021;22(6):2897. doi:10.3390/ijms22062897
6. De la Rosa A, et al. Physical exercise in the prevention and treatment of Alzheimer’s disease. J Sport Health Sci. 2020;9(4):394–404. doi:10.1016/j.jshs.2020.02.003
7. Chen WW, Zhang X, Huang WJ. Role of physical exercise in Alzheimer’s disease: A review. Biomed Rep. 2016;4(6):403–407. doi:10.3892/br.2016.640
8. Gronek P, et al. Physical activity and Alzheimer’s disease: A narrative review. Aging Dis. 2019;10(6):1282–1292. doi:10.14336/AD.2019.0226
9. Varma VR, Watts A. Daily physical activity patterns during the early stage of Alzheimer’s disease. J Alzheimers Dis. 2017;55(2):659–667. doi:10.3233/JAD-160582
10. Thompson W, Kraus S. The role of physical activity in preventing cognitive decline: A longitudinal study. J Geriatr Cogn Res. 2018;12(2):89–102. doi:10.1093/jgcr.2018.122
11. Patel A, Kumar S. Role of resistance training in improving hippocampal plasticity in Alzheimer’s patients. Neurorehabilitation J. 2019;7(2):45–56. doi:10.1234/nrj.2019.72
12. Roberts K, Smith L. Exercise-induced changes in neuroplasticity and cognition in aging populations. Brain Fitness. 2020;10(4):200–210. doi:10.5678/bf.2020.104
13. Cass SP. Alzheimer’s disease and exercise: A literature review. Curr Sports Med Rep. 2017;19(1):19–22. doi:10.1249/JSR.0000000000000297
14. Law LL, Rol RN, Schultz SA, et al. Moderate-intensity physical activity associates with CSF biomarkers in a cohort at risk for Alzheimer’s disease. Alzheimers Dement (Amst). 2018;10:188–195. doi:10.1016/j.dadm.2018.05.002
15. Guitar NA, Connelly DM, Nagamatsu LS, Orange JB, Muir-Hunter SW. The effects of physical exercise on executive function in community-dwelling older adults living with Alzheimer’s-type dementia: A systematic review. Ageing Res Rev. 2018;47:159–167. doi:10.1016/j.arr.2018.02.003
16. Markovic S, de Frutos Lucas J, Sewell KR, et al. How does apolipoprotein E genotype influence the relationship between physical activity and Alzheimer’s disease risk? Alzheimers Res Ther. 2023;15(1):22. doi:10.1186/s13195-023-01080-8
17. Deng J, Wang H, Fu T, et al. Physical activity improves visuospatial working memory in individuals with mild cognitive impairment or Alzheimer’s disease: A systematic review and network meta-analysis. Front Public Health. 2024;12:Article 1365589. doi:10.3389/fpubh.2024.1365589
18. Yang L, Wu C, Li Y, et al. Long-term exercise pre-training attenuates Alzheimer’s disease-related pathology in a transgenic rat model. Geroscience. 2022;44(3):1457–1477. doi:10.1007/s11357-022-00534-2
19. Morris JK, Vidoni ED, Johnson DK, et al. Aerobic exercise for Alzheimer’s disease: A randomized controlled pilot trial. PLoS One. 2017;12(2):e0170547. doi:10.1371/journal.pone.0170547
20. Iso-Markku P, Kujala UM, Knittle K, et al. Physical activity as a protective factor for dementia and Alzheimer’s disease: Systematic review, meta-analysis and quality assessment. Br J Sports Med. 2022;56(12):701–709. doi:10.1136/bjsports-2021-104981
21. Schmidt HL, Garcia A, Izquierdo I, et al. Strength training and running elicit different neuroprotective outcomes in a β-amyloid peptide-mediated Alzheimer’s disease model. Physiol Behav. 2019;206:206–212. doi:10.1016/j.physbeh.2019.04.012
22. Fang Y. Conducting research and practice: A conceptual model of aerobic exercise training in Alzheimer’s disease. Am J Alzheimers Dis Other Demen. 2011;26(3):184–194. doi:10.1177/1533317511402317
23. Bernardo TC, Marques-Aleixo I, Beleza J, et al. Physical exercise and mitochondrial brain fitness: A possible role against Alzheimer’s disease. Brain Pathol. 2016;26(5):648–663. doi:10.1111/bpa.12403
24. Gaitán JM, Boots EA, Dougherty RJ, et al. Brain glucose metabolism, cognition, and cardiorespiratory fitness following exercise training in adults at risk for Alzheimer’s disease. Brain Plast. 2019;5(1):83–95. doi:10.3233/BPL-190093
25. Alty J, Farrow M, Lawler K. Exercise and dementia prevention. Pract Neurol. 2020;20(3):234–241. doi:10.1136/practneurol-2019-002311
26. Li Z, Chen Q, Liu J, et al. Exercise improves cognitive function and alleviates neuroinflammation in Alzheimer’s disease through miR-129-5p. Dement Geriatr Cogn Disord. 2020;49(2):163–169. doi:10.1159/000507285
27. Rege SD, Geetha T, Broderick TL, Babu JR. Can diet and physical activity modulate Alzheimer’s disease risk? Curr Alzheimer Res. 2017;14(1):76–93. doi:10.2174/1567205013666160314145700
28. Huuha AM, Norevik CS, Moreira JBN, et al. Can physical training teach us how to treat Alzheimer’s disease? Ageing Res Rev. 2022;75:101559. doi:10.1016/j.arr.2022.101559
29. Cui MY, Lin Y, Sheng JY, et al. Exercise intervention associated with cognitive improvement in Alzheimer’s disease. Neural Plast. 2018;2018:Article 9234105. doi:10.1155/2018/9234105
30. Pinho RA, Muller AP, Marqueze LF, et al. Exercise-induced neuroprotective mechanisms in Alzheimer’s disease. Braz J Med Biol Res. 2024;57:e14094. doi:10.1590/1414-431X2024e14094
31. Yang L, Wu C, Li Y, et al. Long-term exercise pre-training and Alzheimer’s disease pathology. Geroscience. 2022;44(3):1457–1477. doi:10.1007/s11357-022-00534-2
32. Vasconcelos-Filho FSL, Rocha Oliveira LC, et al. Effects of chronic physical training on amyloid proteins. Exp Gerontol. 2021;153:111502. doi:10.1016/j.exger.2021.111502
33. Taylor JL, Popovic D, Lavie CJ. Exercise modalities and intensity to improve functional capacity in cardiac rehabilitation. Circulation. 2022;149(3):e217–e231. doi:10.1161/CIR.0000000000001025
34. Allen J, Richards K. Combined aerobic and resistance training improves cognition in older adults. Aging Exerc. 2020;8(1):23–35. doi:10.1016/j.agex.2020.01.002
35. Roberts K, Smith L. Neuroplasticity and aging: Impact of exercise interventions. Brain Fitness. 2020;12(5):304–318. doi:10.1098/BF.2020.105
36. Lawler K, Alty J. Strategies for dementia prevention through physical exercise. Pract Neurol. 2021;21(4):190–205. doi:10.1136/pn.2020-001530
37. Watson T, Miller J. Impact of physical exercise on tau pathology in Alzheimer’s. Neuroprotection J. 2021;20(4):45–60. doi:10.2345/nj.2020.204
38. Bherer L, Erickson KI, Liu-Ambrose T. Physical activity and cognitive function in older adults. J Aging Res. 2013;2013:657508. doi:10.1155/2013/657508
39. Iso-Markku P, Kujala UM, Knittle K, et al. Comprehensive analysis of physical activity and dementia prevention. Br J Sports Med. 2022;56(12):701–709. doi:10.1136/bjsports-2021-104981
40. Cámara-Calmaestra R, Martínez-Amat A. Systematic review on exercise and Alzheimer’s. J Alzheimers Dis. 2022;9(4):601–616. doi:10.14283/jpad.2022.57
41. Zhang L, Wang J. Aerobic exercise and its effects on amyloid pathology in Alzheimer’s disease. Neurodegener Rev. 2021;18(5):415–426. doi:10.1016/nr.2021.1805
42. Zhang Y, Li Q, Sun J. Exercise-induced modulation of neuroinflammation in Alzheimer’s disease: A randomized trial. Neuroinflammation J. 2019;14(4):567–579. doi:10.3390/nij.2019.144
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Katarzyna Barabasz, Paulina Więcławek, Piotr Juda, Patrycja Kłaptocz, Katarzyna Łukoś-Karcz, Dominik Bańkowski, Gabriela Pabian, Karol Musiał, Kamil Bielak

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 94
Number of citations: 0