Effects of physical activity on brain function: Mechanisms, adaptations and clinical implications
DOI:
https://doi.org/10.12775/QS.2025.37.57569Keywords
brain, physical activity, brain plasticity, neuroplasticity, BDNF, VEGFAbstract
The effects of physical activity on brain function, the mechanisms involved, adaptations, and clinical implications are topics of great importance given the increasingly common sedentary lifestyle. This paper explores these relationships, starting with the evolutionary aspects of brain development in the context of physical activity. It discusses a variety of forms of exercise, from intense exercise to daily NEAT (non-exercise activity thermogenesis). A key issue is neuroplasticity, which plays an important role in adaptation to external stimuli. The article identifies key neurotrophic factors, such as BDNF (brain-derived neurotrophic factor) and VEGF (vascular endothelial growth factor), which are regulated by physical activity and contribute to improved cognitive function and mental health. The paper demonstrates the multifaceted effects of physical activity on neuroplasticity and brain health.
References
1 - Bramble, D., Lieberman, D. Endurance running and the evolution of Homo. Nature 432, 345–352 (2004). https://doi.org/10.1038/nature03052
2 - Hill T, Polk JD. BDNF, endurance activity, and mechanisms underlying the evolution of hominin brains. Am J Phys Anthropol. 2019; 168:S67: 47–62. https://doi.org/10.1002/ajpa.23762
3 - Brellenthin AG, Crombie KM, Hillard CJ, Koltyn KF. Endocannabinoid and Mood Responses to Exercise in Adults with Varying Activity Levels. Med Sci Sports Exerc. 2017 Aug;49(8):1688-1696. doi: 10.1249/MSS.0000000000001276. PMID: 28319590
4 - Rybakowski, Wszechświat Pismo Przyrodnicze, WPŁYW AKTYWNOŚCI FIZYCZNEJ NA CZYNNOŚĆ MÓZGU, Tom 120 Nr 1-3 (2019)
5 - Duclos M, Ouerdani A, Mormède P, Konsman JP. Food restriction-induced hyperactivity: addiction or adaptation to famine? Psychoneuroendocrinology. 2013 Jun;38(6):884-97. doi: 10.1016/j.psyneuen.2012.09.012. Epub 2012 Oct 8. PMID: 23059205.
6 - Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 1985 Mar-Apr;100(2):126-31. PMID: 3920711; PMCID: PMC1424733.
7 - Jetté M, Sidney K, Blümchen G. Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin Cardiol. 1990 Aug;13(8):555-65. doi: 10.1002/clc.4960130809. PMID: 2204507.
8 - Podgórska, Tak działa mózg. Jak dobrze dbać o jego funkcjonowanie. 1st ed., Grupa Wydawnicza Foksal, 2023.
9 - Wardle MC, Lopez-Gamundi P, LaVoy EC. Effects of an acute bout of physical exercise on reward functioning in healthy adults. Physiol Behav. 2018 Oct 1;194:552-559. doi: 10.1016/j.physbeh.2018.07.010. Epub 2018 Jul 11. PMID: 30017698; PMCID: PMC6086604.
10 - Boecker H, Sprenger T, Spilker ME, Henriksen G, Koppenhoefer M, Wagner KJ, Valet M, Berthele A, Tolle TR. The runner's high: opioidergic mechanisms in the human brain. Cereb Cortex. 2008 Nov;18(11):2523-31. doi: 10.1093/cercor/bhn013. Epub 2008 Feb 21. PMID: 18296435.
11 - Levine JA. Non-exercise activity thermogenesis (NEAT). Best Pract Res Clin Endocrinol Metab. 2002 Dec;16(4):679-702. doi: 10.1053/beem.2002.0227. PMID: 12468415.
12 - Kossut, Neuropsychiatria i Neuropsychologia 2019; 14, 1–2: 1-8
DOI: https://doi.org/10.5114/nan.2019.87727
13 - Kossut, Małgorzata. Neuroplastyczność, Podręcznik przeznaczony dla studentów neurokognitywistyki, neuropsychologii, neurobiologii, podagogiki, neurorehabilitacji i medycyny. Wydawnictwo Medyk, 2018.
14 - Turrigiano GG. The dialectic of Hebb and homeostasis. Philos Trans R Soc Lond B Biol Sci. 2017 Mar 5;372(1715):20160258. doi: 10.1098/rstb.2016.0258. PMID: 28093556; PMCID: PMC5247594.
15 - Di Liegro CM, Schiera G, Proia P, Di Liegro I. Physical Activity and Brain Health. Genes (Basel). 2019 Sep 17;10(9):720. doi: 10.3390/genes10090720. PMID: 31533339; PMCID: PMC6770965.
16 - Szuhany KL, Bugatti M, Otto MW. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J Psychiatr Res. 2015 Jan;60:56-64. doi: 10.1016/j.jpsychires.2014.10.003. Epub 2014 Oct 12. PMID: 25455510; PMCID: PMC4314337.
17 - Yang, B., Ren, Q., Zhang, Jc. et al. Altered expression of BDNF, BDNF pro-peptide and their precursor proBDNF in brain and liver tissues from psychiatric disorders: rethinking the brain–liver axis. Transl Psychiatry 7, e1128 (2017). https://doi.org/10.1038/tp.2017.95
18 - Walsh EI, Smith L, Northey J, Rattray B, Cherbuin N. Towards an understanding of the physical activity-BDNF-cognition triumvirate: A review of associations and dosage. Ageing Res Rev. 2020 Jul;60:101044. doi: 10.1016/j.arr.2020.101044. Epub 2020 Mar 13. PMID: 32171785.
19 - Dinoff A, Herrmann N, Swardfager W, Lanctôt KL. The effect of acute exercise on blood concentrations of brain-derived neurotrophic factor in healthy adults: a meta-analysis. Eur J Neurosci. 2017 Jul;46(1):1635-1646. doi: 10.1111/ejn.13603. Epub 2017 Jun 19. PMID: 28493624.
20 - Brunelli A, Dimauro I, Sgrò P, et al. Acute exercise modulates BDNF and pro-BDNF protein content in immune cells. Medicine and Science in Sports and Exercise. 2012 Oct;44(10):1871-1880. DOI: 10.1249/mss.0b013e31825ab69b. PMID: 22543740.
21 - Hachem LD, Mothe AJ, Tator CH. Effect of BDNF and Other Potential Survival Factors in Models of In Vitro Oxidative Stress on Adult Spinal Cord-Derived Neural Stem/Progenitor Cells. Biores Open Access. 2015 Feb 1;4(1):146-59. doi: 10.1089/biores.2014.0058. PMID: 26309791; PMCID: PMC4497651.
22 - Maharaj AS, D'Amore PA. Roles for VEGF in the adult. Microvasc Res. 2007 Sep-Nov;74(2-3):100-13. doi: 10.1016/j.mvr.2007.03.004. Epub 2007 Apr 6. PMID: 17532010; PMCID: PMC2128714.
23 - Zachary I, Gliki G. Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res. 2001 Feb 16;49(3):568-81. doi: 10.1016/s0008-6363(00)00268-6. PMID: 11166270.
24 - Morland C, Andersson KA, Haugen ØP, Hadzic A, Kleppa L, Gille A, Rinholm JE, Palibrk V, Diget EH, Kennedy LH, Stølen T, Hennestad E, Moldestad O, Cai Y, Puchades M, Offermanns S, Vervaeke K, Bjørås M, Wisløff U, Storm-Mathisen J, Bergersen LH. Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1. Nat Commun. 2017 May 23;8:15557. doi: 10.1038/ncomms15557. PMID: 28534495; PMCID: PMC5457513.
25 - Ferrara N. Vascular endothelial growth factor and the regulation of angiogenesis. Recent Prog Horm Res. 2000;55:15-35; discussion 35-6. PMID: 11036931.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Dariusz Fabian, Klaudia Maria Kufel, Mateusz Teofilak, Natalia Maria Smyl, Olga Śpiołek, Jan Siwiec, Aleksandra Słowikowska, Julia Szatkowska, Marcelina Paula Sztyler-Krąkowska, Agnieszka Alicja Wąsowicz, Franciszek Kędziora

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 81
Number of citations: 0