How breastfeeding affects immunity?
DOI:
https://doi.org/10.12775/QS.2025.37.57377Keywords
breast milk, breastfeeding, immunity, breast milk composition, healthAbstract
Introduction and objective
A person's health is influenced by various factors, one of which is diet, which can be altered to provide many needed ingredients. The early years of life are crucial for building immunity, starting with breast milk as the primary food.
Breastfeeding offers unique benefits, including providing maternal antibodies, immunoglobulins and growth factors that lower the risk of many diseases. In the work presented here, we focus mainly on the components of maternal milk and the benefits of providing them.
Review methods
PubMed/MEDLINE databases were searched using the entry criteria “full text” and the exclusion criteria “systematic reviews,” “meta-analyses” and “review articles.” The phrases “breastfeeding,” “immunity” and “breast milk composition” were included. In the end, 40 publications were left out.
Abbreviated description of the state of knowledge
This study describes the main components of breast milk that build a baby's immunity. The mechanisms of action of these components are key to understanding how food can affect long-term human health and immunity, especially that provided in the first days of life.
Summary
Breastfeeding affects the development and functioning of the baby's operating system. Due to the special composition of breast milk, breastfed children protect against infections and support for additional health. Mechanisms that cause side effects that cause effects not only in the aftermath of life, but also in the aftermath of health in the aftermath of life.
References
1. Brink, L. R., Mercer, K. E., Piccolo, B. D., i wsp. (2020). Neonatal diet alters fecal microbiota and metabolome profiles at different ages in infants fed breast milk or formula. The American journal of clinical nutrition, 111(6), 1190–1202. https://doi.org/10.1093/ajcn/nqaa076
2. https://www.who.int/health-topics/breastfeeding#tab=tab_2
3. Pillay, J., & Davis, T. J. (2023). Physiology, Lactation. In StatPearls. StatPearls Publishing.
4. Shah, R., Sabir, S., & Alhawaj, A. F. (2022). Physiology, Breast Milk. In StatPearls. StatPearls Publishing.
5. Jans, S., Westra, X., Crone, M., i wsp. (2023). Long-term cost savings with Centering-based group antenatal care. Midwifery, 126, 103829. https://doi.org/10.1016/j.midw.2023.103829
6. Del Ciampo, L. A., & Del Ciampo, I. R. L. (2018). Breastfeeding and the Benefits of Lactation for Women's Health. Aleitamento materno e seus benefícios para a saúde da mulher. Revista brasileira de ginecologia e obstetricia : revista da Federacao Brasileira das Sociedades de
Ginecologia e Obstetricia, 40(6), 354–359. https://doi.org/10.1055/s-0038-1657766
7. Hurley, W. L., & Theil, P. K. (2011). Perspectives on immunoglobulins in colostrum and milk. Nutrients, 3(4), 442–474. https://doi.org/10.3390/nu3040442
8. Drugs and Lactation Database (LactMed®) [Internet]. Bethesda (MD): National Institute of Child Health and Human Development; 2006-. Szczepionki przeciwko COVID-19. [Aktualizacja 2024 15 grudnia]. https://www.ncbi.nlm.nih.gov/books/NBK565969/
9. van Keulen, B. J., Romijn, M., Bondt, A., i wsp. (2021). Human Milk from Previously COVID-19-Infected Mothers: The Effect of Pasteurization on Specific Antibodies and Neutralization Capacity. Nutrients, 13(5), 1645. https://doi.org/10.3390/nu13051645
10. Boulangé, C. L., Pedersen, H. K., Martin, F. P., i wsp. (2023). An Extensively Hydrolyzed Formula Supplemented with Two Human Milk Oligosaccharides Modifies the Fecal Microbiome and Metabolome in Infants with Cow's Milk Protein Allergy. International journal of molecular sciences, 24(14), 11422. https://doi.org/10.3390/ijms241411422
11. Henrick, B. M., Rodriguez, L., Lakshmikanth, T., i wsp. (2021). Bifidobacteria-mediated immune system imprinting early in life. Cell, 184(15), 3884–3898.e11. https://doi.org/10.1016/j.cell.2021.05.030
12. Parschat, K., Melsaether, C., Jäpelt, K. R., i wsp. (2021). Clinical Evaluation of 16-Week Supplementation with 5HMO-Mix in Healthy-Term Human Infants to Determine Tolerability, Safety, and Effect on Growth. Nutrients, 13(8), 2871. https://doi.org/10.3390/nu13082871
13. Berger, B., Porta, N., Foata, F., i wsp. (2020). Linking Human Milk Oligosaccharides, Infant Fecal Community Types, and Later Risk To Require Antibiotics. mBio, 11(2), e03196-19. https://doi.org/10.1128/mBio.03196-19
14. Newburg, D. S., Ruiz-Palacios, G. M., & Morrow, A. L. (2005). Human milk glycans protect infants against enteric pathogens. Annual review of nutrition, 25, 37–58. https://doi.org/10.1146/annurev.nutr.25.050304.092553
15. Roger, L. C., Costabile, A., Holland, D. T., i wsp. (2010). Examination of faecal Bifidobacterium populations in breast- and formula-fed infants during the first 18 months of life. Microbiology (Reading, England), 156(Pt 11), 3329–3341. https://doi.org/10.1099/mic.0.043224-0
16. Béghin, L., Tims, S., Roelofs, M., i wsp. (2021). Fermented infant formula (with Bifidobacterium breve C50 and Streptococcus thermophilus O65) with prebiotic oligosaccharides is safe and modulates the gut microbiota towards a microbiota closer to that of breastfed infants. Clinical nutrition (Edinburgh, Scotland), 40(3), 778–787. https://doi.org/10.1016/j.clnu.2020.07.024
17. Ichikawa, M., Sugita, M., Takahashi, M., i wsp. (2003). Breast milk macrophages spontaneously produce granulocyte-macrophage colony-stimulating factor and differentiate into dendritic cells in the presence of exogenous interleukin-4 alone. Immunology, 108(2), 189–195. https://doi.org/10.1046/j.1365-2567.2003.01572.x
18. E., Martí, M., Govindaraj, D., i wsp. (2023). Immune-related microRNAs in breast milk and their relation to regulatory T cells in breastfed children. Pediatric allergy and immunology : official publication of the European Society of Pediatric Allergy and Immunology, 34(4), e13952. https://doi.org/10.1111/pai.13952
19. Andersson, Y., Hammarstrom, M. L., Lonnerdal, B., i wsp. (2009). Formula feeding skews immune cell composition toward adaptive immunity compared to breastfeeding. The Journal of Immunology, 183(7), 4322-4328.
20. York, D. J., Smazal, A. L., Robinson, D. T., i wsp. (2021). Human Milk Growth Factors and Their Role in NEC Prevention: A Narrative Review. Nutrients, 13(11), 3751. https://doi.org/10.3390/nu13113751
21. Kuhn, M. A., Xia, G., Mehta, V. B., i wsp. (2002). Heparin-binding EGF-like growth factor (HB-EGF) decreases oxygen free radical production in vitro and in vivo. Antioxidants & redox signaling, 4(4), 639–646. https://doi.org/10.1089/15230860260220148
22. Conbercept. (2021). In Drugs and Lactation Database (LactMed®). National Institute of Child Health and Human Development.
23. Khor, G. L., Tan, S. S., Stoutjesdijk, E., i wsp. (2020). Temporal Changes in Breast Milk Fatty Acids Contents: A Case Study of Malay Breastfeeding Women. Nutrients, 13(1), 101. https://doi.org/10.3390/nu13010101
24. German, J. B., & Dillard, C. J. (2010). Saturated fats: a perspective from lactation and milk composition. Lipids, 45(10), 915–923. https://doi.org/10.1007/s11745-010-3445-9
25. Martín-Álvarez, E., Diaz-Castro, J., Peña-Caballero, M., i wsp. (2020). Oropharyngeal Colostrum Positively Modulates the Inflammatory Response in Preterm Neonates. Nutrients, 12(2), 413. https://doi.org/10.3390/nu12020413
26. Plunkett, B. A., Mele, L., Casey, B. M., i wsp. (2021). Association of Breastfeeding and Child IQ Score at Age 5 Years. Obstetrics and gynecology, 137(4), 561–570. https://doi.org/10.1097/AOG.0000000000004314
27. Lin, Y. H., Hsu, Y. C., Lin, M. C., i wsp. (2020). The association of macronutrients in human milk with the growth of preterm infants. PloS one, 15(3), e0230800. https://doi.org/10.1371/journal.pone.0230800
28. Nieto-Ruiz, A., Diéguez, E., Sepúlveda-Valbuena, N., i wsp. (2020). Wpływ funkcjonalnej mieszanki dla niemowląt wzbogaconej w składniki odżywcze na rozwój języka u zdrowych dzieci w wieku czterech lat. Składniki odżywcze , 12 (2), 535. https://doi.org/10.3390/nu12020535
29. Basak, S., Mallick, R., & Duttaroy, A. K. (2020). Maternal Docosahexaenoic Acid Status during Pregnancy and Its Impact on Infant Neurodevelopment. Nutrients, 12(12), 3615. https://doi.org/10.3390/nu12123615
30. Onyango, S., Kimani-Murage, E., Kitsao-Wekulo, P., i wsp. (2022). Associations between exclusive breastfeeding duration and children's developmental outcomes: Evidence from Siaya county, Kenya. PloS one, 17(3), e0265366. https://doi.org/10.1371/journal.pone.0265366
31. Chatmethakul, T., Schmelzel, M. L., Johnson, K. J., i wsp. (2022). Postnatal Leptin Levels Correlate with Breast Milk Leptin Content in Infants Born before 32 Weeks Gestation. Nutrients, 14(24), 5224. https://doi.org/10.3390/nu14245224
32. Mennini, M., Arasi, S., & Fiocchi, AG (2021). Zapobieganie alergii poprzez karmienie piersią. Aktualna opinia w dziedzinie alergii i immunologii klinicznej , 21 (2), 216–221. https://doi.org/10.1097/ACI.0000000000000718
33. National Guideline Alliance (UK). (2021). Tools for predicting breastfeeding difficulties: Postnatal care. National Institute for Health and Care Excellence (NICE).
34. Franco-Antonio, C., Santano-Mogena, E., Chimento-Díaz, S., i wsp. (2022). A randomised controlled trial evaluating the effect of a brief motivational intervention to promote breastfeeding in postpartum depression. Scientific reports, 12(1), 373. https://doi.org/10.1038/s41598-021-04338-w
35. Kalarikkal, S. M., & Pfleghaar, J. L. (2023). Breastfeeding. In StatPearls. StatPearls Publishing.
36. Yimer, NB i Liben, ML (2018). Wpływ dostawy do domu na praktyki unikania siary w strefie North Wollo, środowisku miejskim, Etiopia: badanie przekrojowe. Journal of health, population, and nutrition , 37 (1), 4. https://doi.org/10.1186/s41043-018-0134-4
37. Kulski, JK, & Hartmann, PE (1981). Zmiany składu mleka ludzkiego w trakcie inicjacji laktacji. The Australian journal of experimental biology and medical science , 59 (1), 101–114. https://doi.org/10.1038/icb.1981.6
38. Duman, H., & Karav, S. (2023). Bovine colostrum and its potential contributions for treatment and prevention of COVID-19. Frontiers in immunology, 14, 1214514. https://doi.org/10.3389/fimmu.2023.1214514
39. Durkalec-Michalski, K., Główka, N., Podgórski, T., i wsp. (2024). Does Colostrum Bovinum Supplementation Affect Swimming Performance in Endurance-Trained Males? A Randomized Placebo-Controlled Crossover Study. Nutrients, 16(18), 3204. https://doi.org/10.3390/nu16183204
40. Playford, RJ i Weiser, MJ (2021). Siara bydlęca: jej składniki i zastosowania. Składniki odżywcze , 13 (1), 265. https://doi.org/10.3390/nu13010265
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Dawid Piecuch, Weronika Sobota, Katarzyna Zemsta, Przemysław Piskorz, Michał Zwoliński, Edyta Hańczyk, Aleksandra Sędek
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 30
Number of citations: 0