Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Quality in Sport

How breastfeeding affects immunity?
  • Home
  • /
  • How breastfeeding affects immunity?
  1. Home /
  2. Archives /
  3. Vol. 37 (2025) /
  4. Medical Sciences

How breastfeeding affects immunity?

Authors

  • Dawid Piecuch https://orcid.org/0009-0006-8074-0122
  • Weronika Sobota https://orcid.org/0009-0000-7778-7030
  • Katarzyna Zemsta https://orcid.org/0009-0005-8336-2094
  • Przemysław Piskorz https://orcid.org/0009-0000-9812-2230
  • Michał Zwoliński https://orcid.org/0009-0008-5093-5337
  • Edyta Hańczyk https://orcid.org/0009-0003-2769-943X
  • Aleksandra Sędek https://orcid.org/0009-0002-2841-0493

DOI:

https://doi.org/10.12775/QS.2025.37.57377

Keywords

breast milk, breastfeeding, immunity, breast milk composition, health

Abstract

Introduction and objective

A person's health is influenced by various factors, one of which is diet, which can be altered to provide many needed ingredients. The early years of life are crucial for building immunity, starting with breast milk as the primary food.

Breastfeeding offers unique benefits, including providing maternal antibodies, immunoglobulins and growth factors that lower the risk of many diseases. In the work presented here, we focus mainly on the components of maternal milk and the benefits of providing them.

Review methods

PubMed/MEDLINE databases were searched using the entry criteria “full text” and the exclusion criteria “systematic reviews,” “meta-analyses” and “review articles.” The phrases “breastfeeding,” “immunity” and “breast milk composition” were included. In the end, 40 publications were left out.

Abbreviated description of the state of knowledge

This study describes the main components of breast milk that build a baby's immunity. The mechanisms of action of these components are key to understanding how food can affect long-term human health and immunity, especially that provided in the first days of life.

Summary

Breastfeeding affects the development and functioning of the baby's operating system. Due to the special composition of breast milk, breastfed children protect against infections and support for additional health. Mechanisms that cause side effects that cause effects not only in the aftermath of life, but also in the aftermath of health in the aftermath of life.

References

1. Brink, L. R., Mercer, K. E., Piccolo, B. D., i wsp. (2020). Neonatal diet alters fecal microbiota and metabolome profiles at different ages in infants fed breast milk or formula. The American journal of clinical nutrition, 111(6), 1190–1202. https://doi.org/10.1093/ajcn/nqaa076

2. https://www.who.int/health-topics/breastfeeding#tab=tab_2

3. Pillay, J., & Davis, T. J. (2023). Physiology, Lactation. In StatPearls. StatPearls Publishing.

4. Shah, R., Sabir, S., & Alhawaj, A. F. (2022). Physiology, Breast Milk. In StatPearls. StatPearls Publishing.

5. Jans, S., Westra, X., Crone, M., i wsp. (2023). Long-term cost savings with Centering-based group antenatal care. Midwifery, 126, 103829. https://doi.org/10.1016/j.midw.2023.103829

6. Del Ciampo, L. A., & Del Ciampo, I. R. L. (2018). Breastfeeding and the Benefits of Lactation for Women's Health. Aleitamento materno e seus benefícios para a saúde da mulher. Revista brasileira de ginecologia e obstetricia : revista da Federacao Brasileira das Sociedades de

Ginecologia e Obstetricia, 40(6), 354–359. https://doi.org/10.1055/s-0038-1657766

7. Hurley, W. L., & Theil, P. K. (2011). Perspectives on immunoglobulins in colostrum and milk. Nutrients, 3(4), 442–474. https://doi.org/10.3390/nu3040442

8. Drugs and Lactation Database (LactMed®) [Internet]. Bethesda (MD): National Institute of Child Health and Human Development; 2006-. Szczepionki przeciwko COVID-19. [Aktualizacja 2024 15 grudnia]. https://www.ncbi.nlm.nih.gov/books/NBK565969/

9. van Keulen, B. J., Romijn, M., Bondt, A., i wsp. (2021). Human Milk from Previously COVID-19-Infected Mothers: The Effect of Pasteurization on Specific Antibodies and Neutralization Capacity. Nutrients, 13(5), 1645. https://doi.org/10.3390/nu13051645

10. Boulangé, C. L., Pedersen, H. K., Martin, F. P., i wsp. (2023). An Extensively Hydrolyzed Formula Supplemented with Two Human Milk Oligosaccharides Modifies the Fecal Microbiome and Metabolome in Infants with Cow's Milk Protein Allergy. International journal of molecular sciences, 24(14), 11422. https://doi.org/10.3390/ijms241411422

11. Henrick, B. M., Rodriguez, L., Lakshmikanth, T., i wsp. (2021). Bifidobacteria-mediated immune system imprinting early in life. Cell, 184(15), 3884–3898.e11. https://doi.org/10.1016/j.cell.2021.05.030

12. Parschat, K., Melsaether, C., Jäpelt, K. R., i wsp. (2021). Clinical Evaluation of 16-Week Supplementation with 5HMO-Mix in Healthy-Term Human Infants to Determine Tolerability, Safety, and Effect on Growth. Nutrients, 13(8), 2871. https://doi.org/10.3390/nu13082871

13. Berger, B., Porta, N., Foata, F., i wsp. (2020). Linking Human Milk Oligosaccharides, Infant Fecal Community Types, and Later Risk To Require Antibiotics. mBio, 11(2), e03196-19. https://doi.org/10.1128/mBio.03196-19

14. Newburg, D. S., Ruiz-Palacios, G. M., & Morrow, A. L. (2005). Human milk glycans protect infants against enteric pathogens. Annual review of nutrition, 25, 37–58. https://doi.org/10.1146/annurev.nutr.25.050304.092553

15. Roger, L. C., Costabile, A., Holland, D. T., i wsp. (2010). Examination of faecal Bifidobacterium populations in breast- and formula-fed infants during the first 18 months of life. Microbiology (Reading, England), 156(Pt 11), 3329–3341. https://doi.org/10.1099/mic.0.043224-0

16. Béghin, L., Tims, S., Roelofs, M., i wsp. (2021). Fermented infant formula (with Bifidobacterium breve C50 and Streptococcus thermophilus O65) with prebiotic oligosaccharides is safe and modulates the gut microbiota towards a microbiota closer to that of breastfed infants. Clinical nutrition (Edinburgh, Scotland), 40(3), 778–787. https://doi.org/10.1016/j.clnu.2020.07.024

17. Ichikawa, M., Sugita, M., Takahashi, M., i wsp. (2003). Breast milk macrophages spontaneously produce granulocyte-macrophage colony-stimulating factor and differentiate into dendritic cells in the presence of exogenous interleukin-4 alone. Immunology, 108(2), 189–195. https://doi.org/10.1046/j.1365-2567.2003.01572.x

18. E., Martí, M., Govindaraj, D., i wsp. (2023). Immune-related microRNAs in breast milk and their relation to regulatory T cells in breastfed children. Pediatric allergy and immunology : official publication of the European Society of Pediatric Allergy and Immunology, 34(4), e13952. https://doi.org/10.1111/pai.13952

19. Andersson, Y., Hammarstrom, M. L., Lonnerdal, B., i wsp. (2009). Formula feeding skews immune cell composition toward adaptive immunity compared to breastfeeding. The Journal of Immunology, 183(7), 4322-4328.

20. York, D. J., Smazal, A. L., Robinson, D. T., i wsp. (2021). Human Milk Growth Factors and Their Role in NEC Prevention: A Narrative Review. Nutrients, 13(11), 3751. https://doi.org/10.3390/nu13113751

21. Kuhn, M. A., Xia, G., Mehta, V. B., i wsp. (2002). Heparin-binding EGF-like growth factor (HB-EGF) decreases oxygen free radical production in vitro and in vivo. Antioxidants & redox signaling, 4(4), 639–646. https://doi.org/10.1089/15230860260220148

22. Conbercept. (2021). In Drugs and Lactation Database (LactMed®). National Institute of Child Health and Human Development.

23. Khor, G. L., Tan, S. S., Stoutjesdijk, E., i wsp. (2020). Temporal Changes in Breast Milk Fatty Acids Contents: A Case Study of Malay Breastfeeding Women. Nutrients, 13(1), 101. https://doi.org/10.3390/nu13010101

24. German, J. B., & Dillard, C. J. (2010). Saturated fats: a perspective from lactation and milk composition. Lipids, 45(10), 915–923. https://doi.org/10.1007/s11745-010-3445-9

25. Martín-Álvarez, E., Diaz-Castro, J., Peña-Caballero, M., i wsp. (2020). Oropharyngeal Colostrum Positively Modulates the Inflammatory Response in Preterm Neonates. Nutrients, 12(2), 413. https://doi.org/10.3390/nu12020413

26. Plunkett, B. A., Mele, L., Casey, B. M., i wsp. (2021). Association of Breastfeeding and Child IQ Score at Age 5 Years. Obstetrics and gynecology, 137(4), 561–570. https://doi.org/10.1097/AOG.0000000000004314

27. Lin, Y. H., Hsu, Y. C., Lin, M. C., i wsp. (2020). The association of macronutrients in human milk with the growth of preterm infants. PloS one, 15(3), e0230800. https://doi.org/10.1371/journal.pone.0230800

28. Nieto-Ruiz, A., Diéguez, E., Sepúlveda-Valbuena, N., i wsp. (2020). Wpływ funkcjonalnej mieszanki dla niemowląt wzbogaconej w składniki odżywcze na rozwój języka u zdrowych dzieci w wieku czterech lat. Składniki odżywcze , 12 (2), 535. https://doi.org/10.3390/nu12020535

29. Basak, S., Mallick, R., & Duttaroy, A. K. (2020). Maternal Docosahexaenoic Acid Status during Pregnancy and Its Impact on Infant Neurodevelopment. Nutrients, 12(12), 3615. https://doi.org/10.3390/nu12123615

30. Onyango, S., Kimani-Murage, E., Kitsao-Wekulo, P., i wsp. (2022). Associations between exclusive breastfeeding duration and children's developmental outcomes: Evidence from Siaya county, Kenya. PloS one, 17(3), e0265366. https://doi.org/10.1371/journal.pone.0265366

31. Chatmethakul, T., Schmelzel, M. L., Johnson, K. J., i wsp. (2022). Postnatal Leptin Levels Correlate with Breast Milk Leptin Content in Infants Born before 32 Weeks Gestation. Nutrients, 14(24), 5224. https://doi.org/10.3390/nu14245224

32. Mennini, M., Arasi, S., & Fiocchi, AG (2021). Zapobieganie alergii poprzez karmienie piersią. Aktualna opinia w dziedzinie alergii i immunologii klinicznej , 21 (2), 216–221. https://doi.org/10.1097/ACI.0000000000000718

33. National Guideline Alliance (UK). (2021). Tools for predicting breastfeeding difficulties: Postnatal care. National Institute for Health and Care Excellence (NICE).

34. Franco-Antonio, C., Santano-Mogena, E., Chimento-Díaz, S., i wsp. (2022). A randomised controlled trial evaluating the effect of a brief motivational intervention to promote breastfeeding in postpartum depression. Scientific reports, 12(1), 373. https://doi.org/10.1038/s41598-021-04338-w

35. Kalarikkal, S. M., & Pfleghaar, J. L. (2023). Breastfeeding. In StatPearls. StatPearls Publishing.

36. Yimer, NB i Liben, ML (2018). Wpływ dostawy do domu na praktyki unikania siary w strefie North Wollo, środowisku miejskim, Etiopia: badanie przekrojowe. Journal of health, population, and nutrition , 37 (1), 4. https://doi.org/10.1186/s41043-018-0134-4

37. Kulski, JK, & Hartmann, PE (1981). Zmiany składu mleka ludzkiego w trakcie inicjacji laktacji. The Australian journal of experimental biology and medical science , 59 (1), 101–114. https://doi.org/10.1038/icb.1981.6

38. Duman, H., & Karav, S. (2023). Bovine colostrum and its potential contributions for treatment and prevention of COVID-19. Frontiers in immunology, 14, 1214514. https://doi.org/10.3389/fimmu.2023.1214514

39. Durkalec-Michalski, K., Główka, N., Podgórski, T., i wsp. (2024). Does Colostrum Bovinum Supplementation Affect Swimming Performance in Endurance-Trained Males? A Randomized Placebo-Controlled Crossover Study. Nutrients, 16(18), 3204. https://doi.org/10.3390/nu16183204

40. Playford, RJ i Weiser, MJ (2021). Siara bydlęca: jej składniki i zastosowania. Składniki odżywcze , 13 (1), 265. https://doi.org/10.3390/nu13010265

Downloads

  • PDF

Published

2025-01-14

How to Cite

1.
PIECUCH, Dawid, SOBOTA, Weronika, ZEMSTA, Katarzyna, PISKORZ, Przemysław, ZWOLIŃSKI, Michał, HAŃCZYK, Edyta and SĘDEK, Aleksandra. How breastfeeding affects immunity?. Quality in Sport. Online. 14 January 2025. Vol. 37, p. 57377. [Accessed 29 June 2025]. DOI 10.12775/QS.2025.37.57377.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 37 (2025)

Section

Medical Sciences

License

Copyright (c) 2025 Dawid Piecuch, Weronika Sobota, Katarzyna Zemsta, Przemysław Piskorz, Michał Zwoliński, Edyta Hańczyk, Aleksandra Sędek

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats

Number of views and downloads: 170
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

breast milk, breastfeeding, immunity, breast milk composition, health
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop