Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Quality in Sport

The role of Artificial Intelligence in detecting breast lesions using ultrasound
  • Home
  • /
  • The role of Artificial Intelligence in detecting breast lesions using ultrasound
  1. Home /
  2. Archives /
  3. Vol. 37 (2025) /
  4. Medical Sciences

The role of Artificial Intelligence in detecting breast lesions using ultrasound

Authors

  • Daria Ziemińska Szpital św. Wincentego a Paulo w Gdyni, ul. Wójta Radtkego 1, 81-348 Gdynia https://orcid.org/0009-0001-8240-2593
  • Karina Motolko Specjalistyczny Szpital Miejski im. M. Kopernika w Toruniu, ul. Stefana Batorego 17/19, 87-100 Toruń https://orcid.org/0009-0001-9971-6687
  • Rafał Burczyk Szpital Uniwersytecki nr 2 im. dr J. Biziela, ul. Ujejskiego 75, 85-168 Bydgoszcz https://orcid.org/0000-0002-1650-1534
  • Konrad Duszyński Studenckie Koło Naukowe Okulistyki, Gdański Uniwersytet Medyczny, ul. Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk https://orcid.org/0009-0006-5524-8857
  • Elżbieta Tokarczyk Szpital św. Wincentego a Paulo w Gdyni, ul. Wójta Radtkego 1, 81-348 Gdynia https://orcid.org/0009-0003-9683-7699
  • Martyna Michalska Szpital św. Wincentego a Paulo w Gdyni, ul. Wójta Radtkego 1, 81-348 Gdynia https://orcid.org/0009-0002-3467-4364
  • Adam Łabuda 5 Wojskowy Szpital Kliniczny z Polikliniką SPZOZ, ul. Wrocławska 1 /3, 30-901 Kraków https://orcid.org/0009-0005-1978-644X

DOI:

https://doi.org/10.12775/QS.2025.37.57301

Keywords

Artificial intelligence, breast imaging, computer-aided detection, breast cancer, BI-RADS scale, image analysis

Abstract

Introduction and objective: Breast cancer is the most diagnosed cancer and the second leading cause of cancer deaths in women globally, with rising cases and mortality. Early detection via mammography, ultrasound, or MRI is vital, with ultrasound excelling in dense breast tissue due to its safety and accuracy.
Review methods: A literature review utilizing databases like Scopus, Google Scholar, and PubMed, with keywords such as "AI use in radiology" and "BI-RADS scale" underscores the need for advancements in understanding and managing graft rejection.
Brief knowledge status: AI develops systems that simulate human intelligence, excelling in breast imaging by detecting patterns and providing accurate results. Machine learning (ML) and deep learning (DL) drive advances, with DL's CNNs leading in image analysis. AI aids BI-RADS lesion classification, ultrasound lesion detection, lymph node analysis, and treatment response prediction, often surpassing radiologists. Its future relies on real-world validation, improved outcomes, and clinical integration.
Discussion: The integration of artificial intelligence (AI) into breast imaging marks a transformative leap in diagnostic radiology, enhancing precision, efficiency, and scalability. Driven by advancements in machine learning (ML) and deep learning (DL), AI excels in analyzing complex datasets. However, its clinical adoption requires addressing key considerations with a nuanced approach.
Summary: In conclusion, AI holds immense promise in breast imaging, poised to redefine the field through enhanced diagnostic capabilities and clinical utility. Continued advancements and validation efforts will ensure its broader acceptance and sustained impact in medical imaging.

References

1. Giaquinto, A. N., Sung, H., Newman, L. A., Freedman, R. A., Smith, R. A., Star, J., Jemal, A., & Siegel, R. L. (2024). Breast cancer statistics 2024. CA: a cancer journal for clinicians, 74(6), 477–495. https://doi.org/10.3322/caac.21863

2. Berg, W. A., Blume, J. D., Cormack, J. B., Mendelson, E. B., Lehrer, D., Böhm-Vélez, M., Pisano, E. D., Jong, R. A., Evans, W. P., Morton, M. J., Mahoney, M. C., Larsen, L. H., Barr, R. G., Farria, D. M., Marques, H. S., Boparai, K., & ACRIN 6666 Investigators (2008). Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA, 299(18), 2151–2163. https://doi.org/10.1001/jama.299.18.2151

3. Hamid NS, Portnoy JM, Pandya A. Computer-Assisted Clinical Diagnosis and Treatment. 2023 Jun 23;

‌4. Zheng, D., He, X., & Jing, J. (2023). Overview of Artificial Intelligence in Breast Cancer Medical Imaging. Journal of clinical medicine, 12(2), 419. https://doi.org/10.3390/jcm12020419

5. Kwon, H., Oh, S. H., Kim, M. -G., Kim, Y., Jung, G., Lee, H. -J., Kim, S. -Y., & Bae, H. -M. (2024). Enhancing Breast Cancer Detection through Advanced AI-Driven Ultrasound Technology: A Comprehensive Evaluation of Vis-BUS. Diagnostics, 14(17), 1867. https://doi.org/10.3390/diagnostics14171867

6. Songsaeng, C., Woodtichartpreecha, P., & Chaichulee, S. (2021). Multi-scale convolutional neural networks for classification of digital mammograms with breast calcifications. IEEE Access, 9, 114741-114753.

7. Taghipour zahir, S., Aminpour, S., Jafari-Nedooshan J., et al. (2023). Comparative study of breast core needle biopsy (CNB) findings with ultrasound BI-RADS subtyping. Pol Przegl Chir, 95(2), 11-17. https://doi.org/10.5604/01.3001.0015.8480.

8. Bednarski, P., Dobruch-Sobczak, K., Chrapowicki, E., & Jakubowski, W. (2015). Badanie ultrasonograficzne piersi–oczekiwania chirurga. Journal of Ultrasonography, 15(61), 164-171.

9. Nahar, Z., Kabir, M. E., Alam, T., Yasmin, S., & Naowar, M. (2017). Comparison of Mammography and Ultrasonography in Evaluation of Breast Masses. Journal of Armed Forces Medical College, Bangladesh, 13(2), 22-24.

10. Chakkarapani, R., & Durairaj, B. (2018). Diagnostic accuracy of mammography and ultrasonography for breast diseases. Journal of evolution of medical and dental sciencesjemds, 7, 592-596.

11. Badu-Peprah, A., & Adu-Sarkodie, Y. (2018). Accuracy of clinical diagnosis, mammography and ultrasonography in preoperative assessment of breast cancer. Ghana medical journal, 52(3), 133-139.

12. Shin, H. J., Kim, H. H., & Cha, J. H. (2015). Current status of automated breast ultrasonography. Ultrasonography, 34(3), 165.

13. Pereira, R. D. O., Luz, L. A. D., Chagas, D. C., Amorim, J. R., Nery-Júnior, E. D. J., Alves, A. C. B. R., ... & Silva, B. B. D. (2020). Evaluation of the accuracy of mammography, ultrasound and magnetic resonance imaging in suspect breast lesions. Clinics, 75, e1805.

14. Ibrahim A, Gamble P, Jaroensri R et al. Artificial intelligence in digital breast pathology: Techniques and applications. Breast. 2020 Feb;49:267-273. https://doi.org/10.1016/j.breast.2019.12.007

15. Ramirez Zegarra R, Ghi T. Use of artificial intelligence and deep learning in fetal ultrasound imaging. Ultrasound Obstet Gynecol. 2023 Aug;62(2):185-194. https://doi.org/10.1002/uog.26130

16. Bahl M. Updates in Artificial Intelligence for Breast Imaging. Semin Roentgenol. 2022 Apr;57(2):160-167. https://doi.org/10.1053/j.ro.2021.12.005

17. Balkenende L, Teuwen J, Mann RM. Application of Deep Learning in Breast Cancer Imaging. Semin Nucl Med. 2022 Sep;52(5):584-596. https://doi.org/10.1053/j.semnuclmed.2022.02.003

18. Thomassin-Naggara I, Balleyguier C, Ceugnart L et al. Artificial intelligence and breast screening: French Radiology Community position paper. Diagn Interv Imaging. 2019 Oct;100(10):553-566. https://doi.org/10.1016/j.diii.2019.08.005

19. Singh VK, Abdel-Nasser M, Akram F, Rashwan HA, Sarker MdMK, Pandey N, et al. Breast tumor segmentation in ultrasound images using contextual-information-aware deep adversarial learning framework. Expert Systems with Applications. 2020 Dec;162:113870.

‌20. Lokaj B, Pugliese MT, Kinkel K, Lovis C, Schmid J. Barriers and facilitators of artificial intelligence conception and implementation for breast imaging diagnosis in clinical practice: a scoping review. European Radiology. 2023 Sep 2;34.

‌21. P. B. Deshmukh and K. L. Kashyap, "Research Challenges in Breast Cancer Classification through Medical Imaging Modalities using Machine Learning," 2021 International Conference on Industrial Electronics Research and Applications (ICIERA), New Delhi, India, 2021, pp. 1-5, doi: 10.1109/ICIERA53202.2021.9726746.

22. Bai J, Posner R, Wang T, Yang C, Nabavi S. Applying deep learning in digital breast tomosynthesis for automatic breast cancer detection: A review. Medical Image Analysis. 2021 Jul;71:102049.

‌23. Vobugari, N., Raja, V., Sethi, U., Gandhi, K., Raja, K., & Surani, S. R. (2022). Advancements in Oncology with Artificial Intelligence—A Review Article. Cancers, 14(5), 1349. https://doi.org/10.3390/cancers14051349

24. Komatsu, M., Sakai, A., Dozen, A., Shozu, K., Yasutomi, S., Machino, H., Asada, K., Kaneko, S., & Hamamoto, R. (2021). Towards Clinical Application of Artificial Intelligence in Ultrasound Imaging. Biomedicines, 9(7), 720. https://doi.org/10.3390/biomedicines9070720

25. Zhang X, Zhang Y, Zhang G, Qiu X, Tan W, Yin X, et al. Deep Learning With Radiomics for Disease Diagnosis and Treatment: Challenges and Potential. Frontiers in Oncology [Internet]. 2022;12:773840.

‌26. Tadavarthi Y, Vey B, Krupinski E, Prater A, Gichoya J, Safdar N, et al. The State of Radiology AI: Considerations for Purchase Decisions and Current Market Offerings. Radiology: Artificial Intelligence. 2020 Nov 1;2(6):e200004.

Downloads

  • PDF

Published

2025-01-14

How to Cite

1.
ZIEMIŃSKA, Daria, MOTOLKO, Karina, BURCZYK, Rafał, DUSZYŃSKI, Konrad, TOKARCZYK, Elżbieta, MICHALSKA, Martyna and ŁABUDA, Adam. The role of Artificial Intelligence in detecting breast lesions using ultrasound. Quality in Sport. Online. 14 January 2025. Vol. 37, p. 57301. [Accessed 28 June 2025]. DOI 10.12775/QS.2025.37.57301.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 37 (2025)

Section

Medical Sciences

License

Copyright (c) 2025 Daria Ziemińska, Karina Motolko, Rafał Burczyk, Konrad Duszyński, Elżbieta Tokarczyk, Martyna Michalska, Adam Łabuda

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats

Number of views and downloads: 158
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

Artificial intelligence, breast imaging, computer-aided detection, breast cancer, BI-RADS scale, image analysis
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop