Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Quality in Sport

Research on Information Processing System of Sports Combination Training Model Based on Machine Learning and Neural Network
  • Home
  • /
  • Research on Information Processing System of Sports Combination Training Model Based on Machine Learning and Neural Network
  1. Home /
  2. Archives /
  3. Vol. 33 (2024) /
  4. Physical Culture Sciences

Research on Information Processing System of Sports Combination Training Model Based on Machine Learning and Neural Network

Authors

  • Songmao Yu Institute of Physical Education, Southwest University, Chongqing, China https://orcid.org/0009-0004-2168-5798
  • Lei Wang Institute of Physical Education, Southwest University, Chongqing, China
  • Tianwei Li Institute of Physical Education, Southwest University, Chongqing, China

DOI:

https://doi.org/10.12775/QS.2024.33.57176

Keywords

Data Slicing, Information Processing, Neural Network, Sports Training Introduction

Abstract

Information processing systems in sports and training applications are backboned by artificial intelligence for non-human intervening and accurate analysis. The fitness, performance, etc. outcomes are delivered by the system through learning implications over the different inputs. However, the recommendation/ prediction outcomes are down-surged in analyzing similar information due to learning complexity and non-adaptable outcome. Therefore, the problem is resolved by fragmenting and processing the information using a similarity measure. Therefore, this method is named as Sliced-Information Processing with Analogous Learning (SIP-AL). In this method, a neural network is used for deciding the processing feature for better accuracy. In the contrary case of down-surges, the information slicing based on an analogous point is performed. This prevents the continuity between redundant and continuous data preventing errors.

References

[1] Li, L., & Li, C. (2021). Design and Implementation of Track and Field Training Information Collection and Feedback System Based on Multi-sensor Information Fusion. EURASIP Journal on Advances in Signal Processing, 2021(1), 1-18.

[2] Zhang, D. (2021). Interoperability technology of sports health monitoring equipment based on multi-sensor information fusion. EURASIP Journal on Advances in Signal Processing, 2021(1), 1-18.

[3] Zhang, J., Zhao, T., & Zhu, P. (2019). Analysis method of motion information driven by medical big data. IEEE Access, 7, 174189-174199.

[4] Miller, J. J., Mayo, Z., & Podlog, L. (2021). A qualitative analysis of undergraduate sport management student skill and awareness development at an international sports event. Journal of Hospitality, Leisure, Sport & Tourism Education, 100345.

[5] Wang, J., & Lv, B. (2019). Big data analysis and research on consumption demand of sports fitness leisure activities. Cluster Computing, 22(2), 3573-3582.

[6] Men, Y. (2022). Intelligent sports prediction analysis system based on improved Gaussian fuzzy algorithm. Alexandria Engineering Journal, 61(7), 5351-5359.

[7] Zhang, L., & Li, N. (2022). Material analysis and big data monitoring of sports training equipment based on machine learning algorithm. Neural Computing and Applications, 34(4), 2749-2763.

[8] Torres-Ronda, L., Beanland, E., Whitehead, S., Sweeting, A., & Clubb, J. (2022). Tracking Systems in Team Sports: A Narrative Review of Applications of the Data and Sport Specific Analysis. Sports Medicine-Open, 8(1), 1-22.

[9] Ma, H., & Pang, X. (2019). Research and analysis of sport medical data processing algorithms based on deep learning and Internet of Things. IEEE Access, 7, 118839-118849.

[10] Carvalho, A., & Araújo, D. (2022). Self-regulation of learning in sport practices: An ecological dynamics approach. Asian Journal of Sport and Exercise Psychology.

[11] Zhang, X. (2021). Application of human motion recognition utilizing deep learning and smart wearable device in sports. International Journal of System Assurance Engineering and Management, 12(4), 835-843.

[12] Zeng, B., Sanz-Prieto, I., & Luhach, A. K. (2021). Deep learning approach to Automated data collection and processing of video surveillance in sports activity prediction. Annals of Operations Research, 1-20.

[13] Wang, C., & Du, C. (2021). Optimization of physical education and training system based on machine learning and Internet of Things. Neural Computing and Applications, 1-16.

[14] Xiao-wei, X. (2020). Study on the intelligent system of sports culture centers by combining machine learning with big data. Personal and Ubiquitous Computing, 24(1), 151-163.

[15] Su, Y. (2019). Implementation and rehabilitation application of sports medical deep learning model driven by big data. IEEE Access, 7, 156338-156348.

[16] Zhang, D., Zhu, D., & Zhao, T. (2021). Big data monitoring of sports health based on microcomputer processing and BP neural network. Microprocessors and Microsystems, 82, 103939.

[17] Weiwei, H. (2022). Classification of sport actions using principal component analysis and random forest based on three-dimensional data. Displays, 72, 102135.

[18] Zhao, Y., & You, Y. (2021). Design and data analysis of wearable sports posture measurement system based on Internet of Things. Alexandria Engineering Journal, 60(1), 691-701.

[19] Xie, X. (2022). Real-Time Monitoring Of Big Data Sports Teaching Data Based On Complex Embedded System. Microprocessors and Microsystems, 104181.

[20] Qian, L., & Liu, J. (2020). Application of data mining technology and wireless network sensing technology in sports training index analysis. EURASIP Journal on Wireless Communications and Networking, 2020(1), 1-17.

[21] Liang, H. (2021). Evaluation of fitness state of sports training based on self-organizing neural network. Neural Computing and Applications, 33(9), 3953-3965.

[22] Wu, G., & Ji, H. (2022). Short-term memory neural network-based cognitive computing in sports training complexity pattern recognition. Soft Computing, 1-16.

[23] Yuan, C., Yang, Y., & Liu, Y. (2021). Sports decision-making model based on data mining and neural network. Neural Computing and Applications, 33(9), 3911-3924.

[24] Meghji, M., Balloch, A., Habibi, D., Ahmad, I., Hart, N., Newton, R., ... & Waqar, A. (2019). An algorithm for the automatic detection and quantification of athletes’ change of direction incidents using IMU sensor data. IEEE Sensors Journal, 19(12), 4518-4527.

[25] Zhang, Y., Zhang, Y., Zhao, X., Zhang, Z., & Chen, H. (2020). Design and data analysis of sports information acquisition system based on internet of medical things. IEEE Access, 8, 84792-84805.

[26] Zhang, H., Fu, Z., & Shu, K. I. (2019). Recognizing ping-pong motions using inertial data based on machine learning classification algorithms. IEEE Access, 7, 167055-167064.

[27] Cao, Y., & Mao, H. (2022). High-dimensional multi-objective optimization strategy based on directional search in decision space and sports training data simulation. Alexandria Engineering Journal, 61(1), 159-173.

[28] Zadeh, A., Taylor, D., Bertsos, M., Tillman, T., Nosoudi, N., & Bruce, S. (2021). Predicting sports injuries with wearable technology and data analysis. Information Systems Frontiers, 23(4), 1023-1037.

[29] https://data.world/bgadoci/crossfit-data

Downloads

  • PDF

Published

2024-12-31

How to Cite

1.
YU, Songmao, WANG, Lei and LI, Tianwei. Research on Information Processing System of Sports Combination Training Model Based on Machine Learning and Neural Network. Quality in Sport. Online. 31 December 2024. Vol. 33, p. 57176. [Accessed 28 June 2025]. DOI 10.12775/QS.2024.33.57176.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 33 (2024)

Section

Physical Culture Sciences

License

Copyright (c) 2024 Songmao Yu, Lei Wang, Tianwei Li

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats

Number of views and downloads: 80
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

Data Slicing, Information Processing, Neural Network, Sports Training Introduction
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop