Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Quality in Sport

A Comprehensive Analysis of the Effects of Physical Activity, Rehabilitation Methods, Environmental and Behavioral Interventions on the Development and Progression of Myopia
  • Home
  • /
  • A Comprehensive Analysis of the Effects of Physical Activity, Rehabilitation Methods, Environmental and Behavioral Interventions on the Development and Progression of Myopia
  1. Home /
  2. Archives /
  3. Vol. 39 (2025) /
  4. Medical Sciences

A Comprehensive Analysis of the Effects of Physical Activity, Rehabilitation Methods, Environmental and Behavioral Interventions on the Development and Progression of Myopia

Authors

  • Małgorzata Łabuś Medical University of Silesia, ul. Poniatowskiego 15; 40-055 Katowice, Poland https://orcid.org/0009-0003-2799-4375
  • Karol Krzykawski Faculty of Medical Sciences in Katowice, Medical University of Silesia https://orcid.org/0009-0007-4497-2927
  • Jakub Sadowski Faculty of Medical Sciences in Katowice, Medical University of Silesia https://orcid.org/0009-0005-2259-0958
  • Łukasz Stanisław Papież Faculty of Medical Sciences in Katowice, Medical University of Silesia https://orcid.org/0009-0000-1235-0057
  • Tomasz Maciejczyk Faculty of Medical Sciences in Katowice, Medical University of Silesia https://orcid.org/0009-0005-2517-2508
  • Julia Dołęga Faculty of Medical Sciences in Katowice, Medical University of Silesia https://orcid.org/0009-0001-0176-7145
  • Piotr Mól The Sergeant Grzegorz Załoga Hospital of the Ministry of the Interior and Administration, st. Wita Stwosza 39-41, 40-042 Katowice, Poland https://orcid.org/0009-0006-8007-1934
  • Bartłomiej Zabawa Faculty of Medical Sciences in Katowice, Medical University of Silesia https://orcid.org/0009-0005-2419-4748
  • Patrycja Hudzińska Faculty of Medical Sciences in Katowice, Medical University of Silesia https://orcid.org/0009-0000-5881-0733
  • Antoni Sieńko Faculty of Medical Sciences in Katowice, Medical University of Silesia https://orcid.org/0009-0001-6753-7895

DOI:

https://doi.org/10.12775/QS.2025.39.56998

Keywords

Keywords: “myopia”, “physical activity”, “diet”, “rehabilitation”

Abstract

Introduction: Myopia has become a significant public health problem. Traditional approaches focused on optical correction, but evidence points to the role of comprehensive intervention strategies. The aim of this review is to assess the effectiveness of physical activity, rehabilitation, and environmental and behavioral interventions in controlling the development and progression of myopia. 

Materials and Methods: Conducted study involved review of the literature using databases such as PubMed, NCBI, and Google Scholar. In the searching process the terms “myopia”, “physical activity”, “diet” and “rehabilitation” were used.  

State of knowledge: The global prevalence of myopia increased from 28.3% in 2010 to 34.0% in 2020, with a projected increase to 50% of the world's population by 2050. Risk factors include genetic and environmental predispositions. Outdoor physical activity can reduce the risk of developing myopia by about 40%. Optical interventions, such as MiSight lenses, showed a 59% reduction in the change of uncorrected spherical equivalent. Low-concentration atropine eye drops also showed promising results. Environmental factors can influence the development of myopia. Dietary and supplementary interventions show potential in modulating myopia development, although results are inconclusive. 

Conclusions: A comprehensive approach combining physical activity, optical and pharmacological interventions, environmental modifications, and health education appears to be a promising strategy in preventing and controlling myopia progression. Further research is needed on the mechanisms of myopia development and optimization of intervention strategies. 

References

Shan M, Dong Y, Chen J, Su Q, Wan Y. Global Tendency and Frontiers of Research on Myopia From

to 2020: A Bibliometrics Analysis [published correction appears in Front Public Health. 2022 Oct

;10:1063615. doi: 10.3389/fpubh.2022.1063615]. Front Public Health. 2022;10:846601. Published

Mar 10. doi:10.3389/fpubh.2022.846601

Flitcroft DI, He M, Jonas JB, et al. IMI - Defining and Classifying Myopia: A Proposed Set of

Standards for Clinical and Epidemiologic Studies [published correction appears in Invest Ophthalmol

Vis Sci. 2024 Nov 4;65(13):19. doi: 10.1167/iovs.65.13.19]. Invest Ophthalmol Vis Sci.

;60(3):M20-M30. doi:10.1167/iovs.18-25957

Chalanova, R.I., Havrylova, N., Onyshchuk, V., Matseiko, I.I., & Lominoga, S. (2020). The

Elaboration of Treatment and Rehabilitation Complex Myopia Methods and a Study of Its Efficiency

for Children Aged 10–11.

Shi, C. (2024). Application of Genetic Research Techniques in Myopia Research. International Journal

of Computer Science and Information Technology.

Yudin, V., Yaroshenko, V.P., Belikova, E.I., Gatilov, D.V., Ovechkin, I.G., & Kosukhin, E.S. (2023).

METHODOLOGICAL PRINCIPLES OF MEDICAL REHABILITATION OF PATIENTS WITH

VISUALLY STRENUOUS WORK WITH THE SYMPTOMS OF ACCOMMODATIVE

ASTHENOPIA AFTER EXCIMER LASERCORRECTION OF MYOPIA. Bulletin of the Medical

Institute of Continuing Education.

Corpus G, Molina-Martin A, Piñero DP. Efficacy of Soft Contact Lenses for Myopia Control: A

Systematic Review. Semin Ophthalmol. 2024;39(3):185-192. doi:10.1080/08820538.2023.2271063

Khorrami-Nejad, M., Naghdi, T., & Gheibi, A. (2022). Latest Updates on Pharmacological

Management of Myopia Control: A Review Study. Journal of Modern Rehabilitation.

Chen Z, Gu D, Wang B, et al. Significant myopic shift over time: Sixteen-year trends in overall

refraction and age of myopia onset among Chinese children, with a focus on ages 4-6 years. Journal of

global health. 2023;13. doi:https://doi.org/10.7189/jogh.13.04144

Gorecka, A., Kaczyńska, A., Gorecka, D., Chromiak, K., Urbańska, K., Piecewicz-Szczęsna, H.

Epidemiology of myopia and the effect of orthokeratology on controlling the disease. Journal of

Education, Health and Sport. 2022;12(3):24-31. doi:https://doi.org/10.12775/jehs.2022.12.03.002

Rudnicka AR, Kapetanakis VV, Wathern AK, et al. Global variations and time trends in the prevalence

of childhood myopia, a systematic review and quantitative

KIZILTOPRAK H, ÖZKOYUNCU KOCABAŞ D. Myopia; Epidemiology, Prevalence, Incidence,

Genetics and Risk Factors. Güncel Retina Dergisi (Current Retina Journal). 2024;9(4):230-234.

doi:https://doi.org/10.37783/crj-0472

Zhang P, Zhu H. Light Signaling and Myopia Development: A Review. Ophthalmol Ther. 2022

Jun;11(3):939-957. doi: 10.1007/s40123-022-00490-2. Epub 2022 Mar 11. PMID: 35275382; PMCID:

PMC9114237.

Xu R, Zheng J, Liu L, Zhang W. Effects of inflammation on myopia: evidence and potential

mechanisms. Front Immunol. 2023 Oct 2;14:1260592. doi: 10.3389/fimmu.2023.1260592. PMID:

; PMCID: PMC10577208.

Cai XB, Shen SR, Chen DF, Zhang Q, Jin ZB. An overview of myopia genetics. Exp Eye Res. 2019

Nov;188:107778. doi: 10.1016/j.exer.2019.107778. Epub 2019 Aug 28. PMID: 31472110.

Tian T, Zou L, Wang S, Liu R, Liu H. The Role of Dopamine in Emmetropization Modulated by

Wavelength and Temporal Frequency in Guinea Pigs. Invest Ophthalmol Vis Sci. 2021 Sep

;62(12):20. doi: 10.1167/iovs.62.12.20. PMID: 34546324; PMCID: PMC8458992.

Fernández-García JL, Ortega-Usobiaga J, Mayordomo-Cerdá F, Llovet-Osuna F, Bilbao-Calabuig R,

Beltrán-Sanz J, Arias-Puente A. Comparison of Patients With Emmetropia and Presbyopia and

Different Accommodation Who Undergo Unilateral or Bilateral Implantation of a Trifocal IOL. J

Refract Surg. 2023 Dec;39(12):817-824. doi: 10.3928/1081597X-20231018-01. Epub 2023 Dec 1.

PMID: 38063834.

Kaphle D, Schmid KL, Suheimat M, Read SA, Atchison DA. Central and peripheral choroidal

thickness and eye length changes during accommodation. Ophthalmic Physiol Opt. 2023

May;43(3):311-318. doi: 10.1111/opo.13084. Epub 2023 Jan 4. PMID: 36597948.

Li FF, Lu SY, Tang SM, Kam KW, Pancy O S T, Yip WWK, Young AL, Tham CC, Pang CP, Yam

JC, Chen LJ. Genetic associations of myopia severities and endophenotypes in children. Br J

Ophthalmol. 2021 Aug;105(8):1178-1183. doi: 10.1136/bjophthalmol-2020-316728. Epub 2020 Aug

PMID: 32816751.

Chen LJ, Li FF, Lu SY, Zhang XJ, Kam KW, Tang SM, Tam PO, Yip WW, Young AL, Tham CC,

Pang CP, Yam JC. Association of polymorphisms in ZFHX1B, KCNQ5 and GJD2 with myopia

progression and polygenic risk prediction in children. Br J Ophthalmol. 2021 Dec;105(12):1751-1757.

doi: 10.1136/bjophthalmol-2020-318708. Epub 2021 Apr 2. PMID: 33811038.

Demir P, Baskaran K, Theagarayan B, Gierow P, Sankaridurg P, Macedo AF. Refractive error, axial

length, environmental and hereditary factors associated with myopia in Swedish children. Clin Exp

Optom. 2021 Jul;104(5):595-601. doi: 10.1080/08164622.2021.1878833. Epub 2021 Mar 2. PMID:

Harb EN, Wildsoet CF. Origins of Refractive Errors: Environmental and Genetic Factors. Annu Rev

Vis Sci. 2019 Sep 15;5:47-72. doi: 10.1146/annurev-vision-091718-015027. PMID: 31525141.

Bullimore MA, Ritchey ER, Shah S, Leveziel N, Bourne RRA, Flitcroft DI. The Risks and Benefits of

Myopia Control. Ophthalmology. 2021;128(11):1561-1579. doi:10.1016/j.ophtha.2021.04.032

Simonaviciute D, Gelzinis A, Kapitanovaite L, Grzybowski A, Zemaitiene R. Myopia Control in

Caucasian Children with 0.01% Atropine Eye Drops: 1-Year Follow-Up Study. Medicina (Kaunas).

;60(7):1022. Published 2024 Jun 21. doi:10.3390/medicina60071022

Chia A, Lu QS, Tan D. Five-Year Clinical Trial on Atropine for the Treatment of Myopia 2: Myopia

Control with Atropine 0.01% Eyedrops. Ophthalmology. 2016;123(2):391-399.

doi:10.1016/j.ophtha.2015.07.004

Fang PC, Chung MY, Yu HJ, Wu PC. Prevention of myopia onset with 0.025% atropine in premyopic

children. J Ocul Pharmacol Ther. 2010;26(4):341-345. doi:10.1089/jop.2009.0135

Siatkowski RM, Cotter SA, Crockett RS, et al. Two-year multicenter, randomized, double-masked,

placebo-controlled, parallel safety and efficacy study of 2% pirenzepine ophthalmic gel in children

with myopia. J AAPOS. 2008;12(4):332-339. doi:10.1016/j.jaapos.2007.10.014

Tan DT, Lam DS, Chua WH, Shu-Ping DF, Crockett RS; Asian Pirenzepine Study Group. One-year

multicenter, double-masked, placebo-controlled, parallel safety and efficacy study of 2% pirenzepine

ophthalmic gel in children with myopia. Ophthalmology. 2005;112(1):84-91.

doi:10.1016/j.ophtha.2004.06.038

Chamberlain P, Peixoto-de-Matos SC, Logan NS, Ngo C, Jones D, Young G. A 3-year Randomized

Clinical Trial of MiSight Lenses for Myopia Control. Optom Vis Sci. 2019;96(8):556-567.

doi:10.1097/OPX.0000000000001410

Wolffsohn JS, Hill JS, Hunt C, Young G. Visual impact of diffusion optic technology lenses for

myopia control. Ophthalmic Physiol Opt. 2024;44(7):1398-1406. doi:10.1111/opo.13386

Walline JJ, Greiner KL, McVey ME, Jones-Jordan LA. Multifocal contact lens myopia control. Optom

Vis Sci. 2013;90(11):1207-1214. doi:10.1097/OPX.0000000000000036

Cho P, Cheung SW. Retardation of myopia in Orthokeratology (ROMIO) study: a 2-year randomized

clinical trial. Invest Ophthalmol Vis Sci. 2012;53(11):7077-7085. Published 2012 Oct 11.

doi:10.1167/iovs.12-10565

Lam CSY, Tang WC, Tse DY, et al. Defocus Incorporated Multiple Segments (DIMS) spectacle lenses

slow myopia progression: a 2-year randomised clinical trial. Br J Ophthalmol. 2020;104(3):363-368.

doi:10.1136/bjophthalmol-2018-313739

Aller TA, Liu M, Wildsoet CF. Myopia Control with Bifocal Contact Lenses: A Randomized Clinical

Trial. Optom Vis Sci. 2016;93(4):344-352. doi:10.1097/OPX.0000000000000808

Bao J, Yang A, Huang Y, et al. One-year myopia control efficacy of spectacle lenses with aspherical

lenslets. Br J Ophthalmol. 2022;106(8):1171-1176. doi:10.1136/bjophthalmol-2020-318367

Kiuchi Y, Mishima HK, Hotehama Y, Furumoto A, Hirota A, Onari K. Exercise intensity determines

the magnitude of IOP decrease after running. Jpn J Ophthalmol. 1994;38(2):191-5. PMID: 7967212.

Qureshi IA, Xi XR, Wu XD, Zhang J, Shiarkar E. The effect of physical fitness on intraocular pressure

in Chinese medical students. Zhonghua Yi Xue Za Zhi (Taipei). 1996 Nov;58(5):317-22. PMID:

Harris A, Malinovsky V, Martin B. Correlates of acute exercise-induced ocular hypotension. Invest

Ophthalmol Vis Sci. 1994 Oct;35(11):3852-7. PMID: 7928182.

Risner D, Ehrlich R, Kheradiya NS, Siesky B, McCranor L, Harris A. Effects of exercise on intraocular

pressure and ocular blood flow: a review. J Glaucoma. 2009 Aug;18(6):429-36. doi:

1097/IJG.0b013e31818fa5f3. PMID: 19680049.

Zhang J, Liu Z, Wu H, Chen X, Hu Q, Li X, Luo L, Ye S, Ye J. Irisin Attenuates Pathological

Neovascularization in Oxygen-Induced Retinopathy Mice. Invest Ophthalmol Vis Sci. 2022 Jun

;63(6):21. doi: 10.1167/iovs.63.6.21. PMID: 35737379; PMCID: PMC9233294.

Gildea D, Doyle A, O'Connor J. The Effect of Exercise on Intraocular Pressure and Glaucoma. J

Glaucoma. 2024 Jun 1;33(6):381-386. doi: 10.1097/IJG.0000000000002411. Epub 2024 May 10.

PMID: 38722193.

Williams PT. Walking and running are associated with similar reductions in cataract risk. Med Sci

Sports Exerc. 2013 Jun;45(6):1089-96. doi: 10.1249/MSS.0b013e31828121d0. PMID: 23274600;

PMCID: PMC3757559.

Williams PT. Prospective epidemiological cohort study of reduced risk for incident cataract with

vigorous physical activity and cardiorespiratory fitness during a 7-year follow-up. Invest Ophthalmol

Vis Sci. 2009 Jan;50(1):95-100. doi: 10.1167/iovs.08-1797. Epub 2008 Apr 11. PMID: 18408175;

PMCID: PMC4108287.

Zheng Selin J, Orsini N, Ejdervik Lindblad B, Wolk A. Long-term physical activity and risk of agerelated cataract: a population-based prospective study of male and femalecohorts. Ophthalmology.

Feb;122(2):274-80. doi: 10.1016/j.ophtha.2014.08.023. Epub 2014 Sep 27. PMID: 25270274.

Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical

exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox

Signal. 2013 Apr 1;18(10):1208-46. doi: 10.1089/ars.2011.4498. Epub 2012 Nov 16. PMID:

; PMCID: PMC3579386.

He F, Li J, Liu Z, Chuang CC, Yang W, Zuo L. Redox Mechanism of Reactive Oxygen Species in

Exercise. Front Physiol. 2016 Nov 7;7:486. doi: 10.3389/fphys.2016.00486. PMID: 27872595;

PMCID: PMC5097959.

Hansen MH, Laigaard PP, Olsen EM, Skovgaard AM, Larsen M, Kessel L, Munch IC. Low physical

activity and higher use of screen devices are associated with myopia at the age of 16-17 years in the

CCC2000 Eye Study. Acta Ophthalmol. 2020 May;98(3):315-321. doi: 10.1111/aos.14242. Epub 2019

Sep 9. PMID: 31502414.

Guggenheim JA, Northstone K, McMahon G, Ness AR, Deere K, Mattocks C, Pourcain BS, Williams

C. Time outdoors and physical activity as predictors of incident myopia in childhood: a prospective

cohort study. Invest Ophthalmol Vis Sci. 2012 May 14;53(6):2856-65. doi: 10.1167/iovs.11-9091.

PMID: 22491403; PMCID: PMC3367471.

Flitcroft DI. The complex interactions of retinal, optical and environmental factors in myopia aetiology.

Prog Retin Eye Res. 2012 Nov;31(6):622-60. doi: 10.1016/j.preteyeres.2012.06.004. Epub 2012 Jul 4.

PMID: 22772022.

Karthikeyan SK, Ashwini DL, Priyanka M, Nayak A, Biswas S. Physical activity, time spent outdoors,

and near work in relation to myopia prevalence, incidence, and progression: An overview of systematic

reviews and meta-analyses. Indian J Ophthalmol. 2022 Mar;70(3):728-739. doi:

4103/ijo.IJO_1564_21. PMID: 35225506; PMCID: PMC9114537.

Huang HM, Chang DS, Wu PC. The Association between Near Work Activities and Myopia in

Children-A Systematic Review and Meta-Analysis. PLoS One. 2015 Oct 20;10(10):e0140419. doi:

1371/journal.pone.0140419. PMID: 26485393; PMCID: PMC4618477.

French AN, Ashby RS, Morgan IG, Rose KA. Time outdoors and the prevention of myopia. Exp Eye

Res. 2013 Sep;114:58-68. doi: 10.1016/j.exer.2013.04.018. Epub 2013 May 2. PMID: 23644222.

Zhang J, Deng G. Protective effects of increased outdoor time against myopia: a review. J Int Med Res.

Mar;48(3):300060519893866. doi: 10.1177/0300060519893866. Epub 2019 Dec 19. PMID:

; PMCID: PMC7607527.

Xiong S, Sankaridurg P, Naduvilath T, Zang J, Zou H, Zhu J, Lv M, He X, Xu X. Time spent in

outdoor activities in relation to myopia prevention and control: a meta-analysis and systematic review.

Acta Ophthalmol. 2017 Sep;95(6):551-566. doi: 10.1111/aos.13403. Epub 2017 Mar 2. PMID:

; PMCID: PMC5599950.

Biswas S, El Kareh A, Qureshi M, Lee DMX, Sun CH, Lam JSH, Saw SM, Najjar RP. The influence

of the environment and lifestyle on myopia. J Physiol Anthropol. 2024 Jan 31;43(1):7. doi:

1186/s40101-024-00354-7. PMID: 38297353; PMCID: PMC10829372.

Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. Environmental and Health Impacts of

Air Pollution: A Review. Front Public Health. 2020 Feb 20;8:14. doi: 10.3389/fpubh.2020.00014.

PMID: 32154200; PMCID: PMC7044178.

Wei CC, Lin HJ, Lim YP, Chen CS, Chang CY, Lin CJ, Chen JJ, Tien PT, Lin CL, Wan L. PM2.5 and

NOx exposure promote myopia: clinical evidence and experimental proof. Environ Pollut. 2019

Nov;254(Pt B):113031. doi: 10.1016/j.envpol.2019.113031. Epub 2019 Aug 15. PMID: 31454569.

Yang BY, Guo Y, Zou Z, Gui Z, Bao WW, Hu LW, Chen G, Jing J, Ma J, Li S, Ma Y, Chen YJ, Dong

GH. Exposure to ambient air pollution and visual impairment in children: A nationwide cross-sectional

study in China. J Hazard Mater. 2021 Apr 5;407:124750. doi: 10.1016/j.jhazmat.2020.124750. Epub

Dec 2. PMID: 33341569.

Zainutdinova, I.I., Saifullina, F.R., & Dautov, F.F. (2012). Refraction characteristics of the vision

organ of school children living and studying in the area with high intensity of automobile traffic.

Kazanskiy meditsinskiy zhurnal, 93, 276-278.

Yuan T, Zou H. Effects of air pollution on myopia: an update on clinical evidence and biological

mechanisms. Environ Sci Pollut Res Int. 2022 Oct;29(47):70674-70685. doi: 10.1007/s11356-022-

-9. Epub 2022 Aug 29. PMID: 36031679; PMCID: PMC9515022.

Cougnard-Gregoire A, Merle BMJ, Aslam T, Seddon JM, Aknin I, Klaver CCW, Garhöfer G, Layana

AG, Minnella AM, Silva R, Delcourt C. Blue Light Exposure: Ocular Hazards and Prevention-A

Narrative Review. Ophthalmol Ther. 2023 Apr;12(2):755-788. doi: 10.1007/s40123-023-00675-3.

Epub 2023 Feb 18. PMID: 36808601; PMCID: PMC9938358.

Kumari, R., & Thool, A. (2021). Impact of Digital Devices on Myopic Individuals. Journal of

Pharmaceutical Research International.

Marek V, Mélik-Parsadaniantz S, Villette T, Montoya F, Baudouin C, Brignole-Baudouin F, Denoyer

A. Blue light phototoxicity toward human corneal and conjunctival epithelial cells in basal and

hyperosmolar conditions. Free Radic Biol Med. 2018 Oct;126:27-40. doi:

1016/j.freeradbiomed.2018.07.012. Epub 2018 Jul 21. PMID: 30040995.

Mei Z, Zhang Y, Jiang W, Lam C, Luo S, Cai C, Luo S. Efficacy of outdoor interventions for myopia

in children and adolescents: a systematic review and meta-analysis of randomized controlled trials.

Front Public Health. 2024 Aug 13;12:1452567. doi: 10.3389/fpubh.2024.1452567. PMID: 39193200;

PMCID: PMC11347293.

Chen J, Wang J, Qi Z, Liu S, Zhao L, Zhang B, Dong K, Du L, Yang J, Zou H, He X, Xu X.

Smartwatch Measures of Outdoor Exposure and Myopia in Children. JAMA Netw Open. 2024 Aug

;7(8):e2424595. doi: 10.1001/jamanetworkopen.2024.24595. PMID: 39136948; PMCID:

PMC11322842.

Rodriguez NG, Claici AO, Ramos-Castaneda JA, González-Zamora J, Bilbao-Malavé V, de la Puente

M, Fernandez-Robredo P, Garzón-Parra SJ, Garza-Leon M, Recalde S. Conjunctival ultraviolet

autofluorescence as a biomarker of outdoor exposure in myopia: a systematic review and metaanalysis. Sci Rep. 2024 Jan 11;14(1):1097. doi: 10.1038/s41598-024-51417-9. PMID: 38212604;

PMCID: PMC10784576.

Choo PP, Woi PJ, Bastion MC, Omar R, Mustapha M, Md Din N. Review of Evidence for the Usage of

Antioxidants for Eye Aging. Biomed Res Int. 2022 Oct 3;2022:5810373. doi: 10.1155/2022/5810373.

PMID: 36225983; PMCID: PMC9550496.

Shetty, Aksha & Ganguly, Anasuya & Chodankar, Suvarna & Usgaonkar, Ugam. (2023). Dietary

intake and its association with myopia in children in Goa. Indian Journal of Clinical and Experimental

Ophthalmology. 9. 610-615. 10.18231/j.ijceo.2023.114.

Lin Z, Vasudevan B, Jhanji V, et al. Eye exercises of acupoints: their impact on refractive error and

visual symptoms in Chinese urban children. BMC Complement Altern Med. 2013;13:306. Published

Nov 7. doi:10.1186/1472-6882-13-306

Kang MT, Li SM, Peng X, et al. Chinese Eye Exercises and Myopia Development in School Age

Children: A Nested Case-control Study. Sci Rep. 2016;6:28531. Published 2016 Jun 22.

doi:10.1038/srep28531

Jiang Y, Zhu Z, Tan X, et al. Effect of Repeated Low-Level Red-Light Therapy for Myopia Control in

Children: A Multicenter Randomized Controlled Trial. Ophthalmology. 2022;129(5):509-519.

doi:10.1016/j.ophtha.2021.11.023

Dong J, Zhu Z, Xu H, He M. Myopia Control Effect of Repeated Low-Level Red-Light Therapy in

Chinese Children: A Randomized, Double-Blind, Controlled Clinical Trial. Ophthalmology.

;130(2):198-204. doi:10.1016/j.ophtha.2022.08.024

He X, Wang J, Zhu Z, et al. Effect of Repeated Low-level Red Light on Myopia Prevention Among

Children in China With Premyopia: A Randomized Clinical Trial [published correction appears in

JAMA Netw Open. 2023 Sep 5;6(9):e2337652. doi: 10.1001/jamanetworkopen.2023.37652]. JAMA

Netw Open. 2023;6(4):e239612. Published 2023 Apr 3. doi:10.1001/jamanetworkopen.2023.9612

Cao K, Tian L, Ma DL, et al. Daily Low-Level Red Light for Spherical Equivalent Error and Axial

Length in Children With Myopia: A Randomized Clinical Trial. JAMA Ophthalmol. 2024;142(6):560-

doi:10.1001/jamaophthalmol.2024.0801

Zhou W, Liao Y, Wang W, et al. Efficacy of Different Powers of Low-Level Red Light in Children for

Myopia Control. Ophthalmology. 2024;131(1):48-57. doi:10.1016/j.ophtha.2023.08.020

Eric L. Lien, Billy R. Hammond, Nutritional influences on visual development and function, Progress

in Retinal and Eye Research, Volume 30, Issue 3, 2011, Pages 188-203, ISSN 1350-9462,

https://doi.org/10.1016/j.preteyeres.2011.01.001.

Lim, L. S., Gazzard, G., Low, Y.-L., Choo, R., Tan, D. T. H., Tong, L., … Saw, S.-M. (2010). Dietary

Factors, Myopia, and Axial Dimensions in Children. Ophthalmology, 117(5), 993–997.e4.

doi:10.1016/j.ophtha.2009.10.003

Syawali, I.G., Amra, A.A., & Aldy, F. (2023). Effects of Nigella sativa Supplementation on Axial

Length Changes in Children with Myopia. European Modern Studies Journal.

https://www.doi.org/10.59573/emsj.7(1).2023.9

Kim J-M and Choi YJ (2024) Association between dietary nutrient intake and prevalence of myopia in

Korean adolescents: evidence from the 7th Korea National Health and Nutrition Examination Survey.

Front. Pediatr. 11:1285465. doi: 10.3389/fped.2023.1285465

Massoudi, S., Azizi-Soleiman, F., Yazdi, M. et al. The association between macronutrients intake and

myopia risk: a systematic review and meta-analysis. BMC Ophthalmol 24, 472 (2024).

https://doi.org/10.1186/s12886-024-03738-6

Xu, X.; Liu, N.; Yu,W. No Evidence of an Association between Genetic Factors Affecting Response to

Vitamin A Supplementation and Myopia: A Mendelian Randomization Study and Meta-Analysis.

Nutrients

, 16, 1933. https://doi.org/10.3390/nu16121933

Pan W, Lin J, Zheng L, Lan W, Ying G, Yang Z, Li X. Myopia and axial length in school-aged

children before, during, and after the COVID-19 lockdown-A population-based study. Front Public

Health. 2022 Dec 15;10:992784. doi: 10.3389/fpubh.2022.992784. PMID: 36589986; PMCID:

PMC9799254.

Dutheil F, Oueslati T, Delamarre L, Castanon J, Maurin C, Chiambaretta F, Baker JS, Ugbolue UC,

Zak M, Lakbar I, Pereira B, Navel V. Myopia and Near Work: A Systematic Review and MetaAnalysis. Int J Environ Res Public Health. 2023 Jan 3;20(1):875. doi: 10.3390/ijerph20010875. PMID:

; PMCID: PMC9820324.

Datta S, Sehgal S, Bhattacharya B, Satgunam PN. The 20/20/20 rule: Practicing pattern and

associations with asthenopic symptoms. Indian J Ophthalmol. 2023 May;71(5):2071-2075. doi:

4103/ijo.IJO_2056_22. PMID: 37203083; PMCID: PMC10391416.

Talens-Estarelles C, Cerviño A, García-Lázaro S, Fogelton A, Sheppard A, Wolffsohn JS. The effects

of breaks on digital eye strain, dry eye and binocular vision: Testing the 20-20-20 rule. Cont Lens

Anterior Eye. 2023 Apr;46(2):101744. doi: 10.1016/j.clae.2022.101744. Epub 2022 Aug 11. PMID:

Li Q, Guo L, Zhang J, Zhao F, Hu Y, Guo Y, Du X, Zhang S, Yang X, Lu C. Effect of School-Based

Family Health Education via Social Media on Children's Myopia and Parents' Awareness: A

Randomized Clinical Trial. JAMA Ophthalmol. 2021 Nov 1;139(11):1165-1172. doi:

1001/jamaophthalmol.2021.3695. PMID: 34529026; PMCID: PMC8446904.

Nitzan I, Shmueli O, Safir M. Association of myopia with anxiety and mood disorders in adolescents.

Eye (Lond). 2024 Oct;38(15):3016-3018. doi: 10.1038/s41433-024-03170-6. Epub 2024 Jun 13.

PMID: 38871937; PMCID: PMC11461814.

Downloads

  • PDF

Published

2025-03-10

How to Cite

1.
ŁABUŚ, Małgorzata, KRZYKAWSKI, Karol, SADOWSKI, Jakub, PAPIEŻ, Łukasz Stanisław, MACIEJCZYK, Tomasz, DOŁĘGA, Julia, MÓL, Piotr, ZABAWA, Bartłomiej, HUDZIŃSKA, Patrycja and SIEŃKO, Antoni. A Comprehensive Analysis of the Effects of Physical Activity, Rehabilitation Methods, Environmental and Behavioral Interventions on the Development and Progression of Myopia . Quality in Sport. Online. 10 March 2025. Vol. 39, p. 56998. [Accessed 28 June 2025]. DOI 10.12775/QS.2025.39.56998.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 39 (2025)

Section

Medical Sciences

License

Copyright (c) 2025 Małgorzata Łabuś, Karol Krzykawski, Jakub Sadowski, Łukasz Stanisław Papież, Tomasz Maciejczyk, Julia Dołęga, Piotr Mól, Bartłomiej Zabawa, Patrycja Hudzińska, Antoni Sieńko

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats

Number of views and downloads: 145
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

Keywords: “myopia”, “physical activity”, “diet”, “rehabilitation”
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop