Ewing sarcoma – pathomechanisms, standard treatment and new therapeutic perspectives
DOI:
https://doi.org/10.12775/QS.2025.37.56905Keywords
Ewing sarcoma, EWS-FLI1, Epigenetics, Pathomechanisms, MetastasisAbstract
Introduction: Ewing sarcoma is the second most common bone tumor among children, and due to its high malignancy 5-year survival rate for patients with primary lesions is around 70%. This number drops to merely 30% if metastases are present. Despite combined modality treatment, including radiotherapy, surgery, pre- and post-surgery chemotherapy, the mortality of patients is still too high. This shows a great need to look for new therapeutic options.
Methodology: Comprehensive literature review was conducted across databases, including PubMed and Google Scholar for studies published between 2000 and 2023. This review presents factors that play a key role in pathogenesis and are potential points of targeted therapy. The paper discusses, among other things, treatment attempts based on the role of the EWS-FLI1 protein, epigenetics, tyrosine kinase inhibitors, immunotherapies and the use of nanomedicine and viruses, as well as the difficulties associated with their application.
Findings: The studies cited vary depending on the phase of the clinical trial they are on, of which teprotumumab, robatumumab, and a combination of cixutumumab/temsyrolimus, ivodesinib, Nivolumab (a PD-1 inhibitor), and Ipilimumab (a CTLA-4 inhibitor) are quite advanced as well as those conducted only on animals and in vitro like YK-4-279 molecule, mithramycin 2'-oxime, NK cells, siRNAs with cationic detonation nanodiamonds (DNDs) and Il-12 by means of lentiviruses.
Conclusions: They are new and promising approaches in cases where standard treatments fail, yet they still require further study. Knowledge of the mechanisms of Ewing's sarcoma formation and its metastases, currently accepted treatment standards, critical points in the pathomechanism and current attempts at treating Ewing's sarcoma is essential for choosing the best treatment and effectively reducing its mortality rate.
References
N. J. Balamuth and R. B. Womer, ‘Ewing’s sarcoma.’, Lancet Oncol, vol. 11, no. 2, pp. 184–92, Feb. 2010, doi: 10.1016/S1470-2045(09)70286-4.
M. Sbaraglia, E. Bellan, and A. P. Dei Tos, ‘The 2020 WHO Classification of Soft Tissue Tumours: news and perspectives.’, Pathologica, vol. 113, no. 2, pp. 70–84, Apr. 2021, doi: 10.32074/1591-951X-213.
M. Sbaraglia, A. Righi, M. Gambarotti, and A. P. Dei Tos, ‘Ewing sarcoma and Ewing-like tumors.’, Virchows Arch, vol. 476, no. 1, pp. 109–119, Jan. 2020, doi: 10.1007/s00428-019-02720-8.
J. Ewing, ‘Diffuse Endothelioma of Bone’, CA Cancer J Clin, vol. 22, no. 2, pp. 95–98, Mar. 1972, doi: 10.3322/CANJCLIN.22.2.95.
M. Dupuy et al., ‘Ewing sarcoma from molecular biology to the clinic’, Front Cell Dev Biol, vol. 11, Sep. 2023, doi: 10.3389/fcell.2023.1248753.
A. D. Lynch, F. Gani, C. F. Meyer, C. D. Morris, N. Ahuja, and F. M. Johnston, ‘Extraskeletal versus Skeletal Ewing Sarcoma in the adult population: Controversies in care.’, Surg Oncol, vol. 27, no. 3, pp. 373–379, Sep. 2018, doi: 10.1016/j.suronc.2018.05.016.
G. G. Meshram, N. Kaur, and K. S. Hura, ‘Ewing’s sarcoma with distant metastasis: A brief note on management and emerging therapies.’, Clin Pract, vol. 9, no. 3, p. 1111, Aug. 2019, doi: 10.4081/cp.2019.1111.
J. C. Schwartz, T. R. Cech, and R. R. Parker, ‘Biochemical Properties and Biological Functions of FET Proteins.’, Annu Rev Biochem, vol. 84, pp. 355–79, 2015, doi: 10.1146/annurev-biochem-060614-034325.
R. Smith et al., ‘Expression profiling of EWS/FLI identifies NKX2.2 as a critical target gene in Ewing’s sarcoma’, Cancer Cell, vol. 9, no. 5, pp. 405–416, May 2006, doi: 10.1016/j.ccr.2006.04.004.
L. Yu, I. J. Davis, and P. Liu, ‘Regulation of EWSR1-FLI1 Function by Post-Transcriptional and Post-Translational Modifications’, Cancers (Basel), vol. 15, no. 2, p. 382, Jan. 2023, doi: 10.3390/cancers15020382.
A. A. Ahmed, H. Zia, and L. Wagner, ‘Therapy resistance mechanisms in Ewing’s sarcoma family tumors’, Cancer Chemother Pharmacol, vol. 73, no. 4, pp. 657–663, Apr. 2014, doi: 10.1007/s00280-014-2392-1.
F. S. Dela Cruz, ‘Cancer Stem Cells in Pediatric Sarcomas’, Front Oncol, vol. 3, 2013, doi: 10.3389/fonc.2013.00168.
W. Luo, K. Gangwal, S. Sankar, K. M. Boucher, D. Thomas, and S. L. Lessnick, ‘GSTM4 is a microsatellite-containing EWS/FLI target involved in Ewing’s sarcoma oncogenesis and therapeutic resistance’, Oncogene, vol. 28, no. 46, pp. 4126–4132, Nov. 2009, doi: 10.1038/onc.2009.262.
T. Magwere and S. A. Burchill, ‘Heterogeneous Role of the Glutathione Antioxidant System in Modulating the Response of ESFT to Fenretinide in Normoxia and Hypoxia’, PLoS One, vol. 6, no. 12, p. e28558, Dec. 2011, doi: 10.1371/journal.pone.0028558.
K. Scotlandi et al., ‘Overcoming Resistance to Conventional Drugs in Ewing Sarcoma and Identification of Molecular Predictors of Outcome’, Journal of Clinical Oncology, vol. 27, no. 13, pp. 2209–2216, May 2009, doi: 10.1200/JCO.2008.19.2542.
Q. T. Tan, J. Y. Teo, S. S. Ahmed, and A. Y. F. Chung, ‘A case of small bowel metastasis from spinal Ewing sarcoma causing intussusception in an adult female’, World J Surg Oncol, vol. 14, no. 1, p. 109, Dec. 2016, doi: 10.1186/s12957-016-0850-4.
M. Li and C. Chen, ‘Regulation of Metastasis in Ewing Sarcoma’, Cancers (Basel), vol. 14, no. 19, p. 4902, Oct. 2022, doi: 10.3390/cancers14194902.
T. S. McCann et al., ‘KDM5A and PHF2 positively control expression of pro-metastatic genes repressed by EWS/Fli1, and promote growth and metastatic properties in Ewing sarcoma.’, Oncotarget, vol. 11, no. 43, pp. 3818–3831, Oct. 2020, doi: 10.18632/oncotarget.27737.
E. A. Pedersen et al., ‘Activation of Wnt/β-Catenin in Ewing Sarcoma Cells Antagonizes EWS/ETS Function and Promotes Phenotypic Transition to More Metastatic Cell States’, Cancer Res, vol. 76, no. 17, pp. 5040–5053, Sep. 2016, doi: 10.1158/0008-5472.CAN-15-3422.
A. G. Hawkins et al., ‘The Ewing Sarcoma Secretome and Its Response to Activation of Wnt/beta-catenin Signaling’, Molecular & Cellular Proteomics, vol. 17, no. 5, pp. 901–912, May 2018, doi: 10.1074/mcp.RA118.000596.
A. Mendoza‐Naranjo et al., ‘ERBB 4 confers metastatic capacity in Ewing sarcoma’, EMBO Mol Med, vol. 5, no. 7, pp. 1087–1102, Jul. 2013, doi: 10.1002/emmm.201202343.
K. Steinestel et al., ‘Focal adhesion kinase confers pro‐migratory and antiapoptotic properties and is a potential therapeutic target in Ewing sarcoma’, Mol Oncol, vol. 14, no. 2, pp. 248–260, Feb. 2020, doi: 10.1002/1878-0261.12610.
A. M. Katschnig et al., ‘EWS-FLI1 perturbs MRTFB/YAP-1/TEAD target gene regulation inhibiting cytoskeletal autoregulatory feedback in Ewing sarcoma’, Oncogene, vol. 36, no. 43, pp. 5995–6005, Oct. 2017, doi: 10.1038/onc.2017.202.
H. Zia et al., ‘CYP3A isoforms in Ewing’s sarcoma tumours: an immunohistochemical study with clinical correlation’, Int J Exp Pathol, vol. 96, no. 2, pp. 81–86, Apr. 2015, doi: 10.1111/iep.12115.
S. K. Zöllner et al., ‘Ewing Sarcoma-Diagnosis, Treatment, Clinical Challenges and Future Perspectives.’, J Clin Med, vol. 10, no. 8, Apr. 2021, doi: 10.3390/jcm10081685.
C. Gerrand et al., ‘Seeking international consensus on approaches to primary tumour treatment in Ewing sarcoma’, Clin Sarcoma Res, vol. 10, no. 1, p. 21, Dec. 2020, doi: 10.1186/s13569-020-00144-6.
T. Zhang et al., ‘Efficacy Comparison of Six Chemotherapeutic Combinations for Osteosarcoma and Ewing’s Sarcoma Treatment: A Network Meta-Analysis.’, J Cell Biochem, vol. 119, no. 1, pp. 250–259, Jan. 2018, doi: 10.1002/jcb.25976.
L. M. Haveman et al., ‘High-dose chemotherapy followed by autologous haematopoietic cell transplantation for children, adolescents, and young adults with first recurrence of Ewing sarcoma.’, Cochrane Database Syst Rev, vol. 9, no. 9, p. CD011406, Sep. 2021, doi: 10.1002/14651858.CD011406.pub2.
G. Kapoor and S. Jain, ‘Choice of Local Therapy in Children With Ewing Sarcoma.’, Indian Pediatr, vol. 57, no. 6, pp. 503–504, Jun. 2020.
J. Anderton et al., ‘International randomised controlled trial for the treatment of newly diagnosed EWING sarcoma family of tumours – EURO EWING 2012 Protocol’, Trials, vol. 21, no. 1, p. 96, Dec. 2020, doi: 10.1186/s13063-019-4026-8.
T. Świtaj and P. Jagodzińska-Mucha, ‘Ewing sarcoma’, Oncology in Clinical Practice, vol. 14, no. 6, pp. 392–398, Mar. 2019, doi: 10.5603/OCP.2018.0052.
P. G. Casali et al., ‘Bone sarcomas: ESMO-PaedCan-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up.’, Ann Oncol, vol. 29, no. Suppl 4, pp. iv79–iv95, Oct. 2018, doi: 10.1093/annonc/mdy310.
C. Gerrand et al., ‘UK guidelines for the management of bone sarcomas.’, Clin Sarcoma Res, vol. 6, p. 7, 2016, doi: 10.1186/s13569-016-0047-1.
B. sarcomas Redakcja et al., ‘WYTYCZNE POSTĘPOWANIA DIAGNOSTYCZNO-TERAPEUTYCZNEGO Mięsaki kości’, doi: 10.5603/OCP.2018.0018.
J. Sybil Biermann et al., ‘NCCN Guidelines Index Table of Contents Discussion NCCN Guidelines Version 1.2018 Panel Members Bone Cancer’, 2018.
P. Rutkowski et al., ‘WYTYCZNE POSTĘPOWANIA DIAGNOSTYCZNO-TERAPEUTYCZNEGO Postępowanie diagnostyczno--terapeutyczne u chorych na mięsaki kości-zalecenia ekspertów’.
M.-C. Le Deley et al., ‘Cyclophosphamide compared with ifosfamide in consolidation treatment of standard-risk Ewing sarcoma: results of the randomized noninferiority Euro-EWING99-R1 trial.’, J Clin Oncol, vol. 32, no. 23, pp. 2440–8, Aug. 2014, doi: 10.1200/JCO.2013.54.4833.
B. Brennan et al., ‘Comparison of two chemotherapy regimens in patients with newly diagnosed Ewing sarcoma (EE2012): an open-label, randomised, phase 3 trial.’, Lancet, vol. 400, no. 10362, pp. 1513–1521, Oct. 2022, doi: 10.1016/S0140-6736(22)01790-1.
J. W. Denbo et al., ‘Timing of surgery and the role of adjuvant radiotherapy in ewing sarcoma of the chest wall: a single-institution experience.’, Ann Surg Oncol, vol. 19, no. 12, pp. 3809–15, Nov. 2012, doi: 10.1245/s10434-012-2449-5.
A. Schuck et al., ‘Local therapy in localized Ewing tumors: results of 1058 patients treated in the CESS 81, CESS 86, and EICESS 92 trials.’, Int J Radiat Oncol Biol Phys, vol. 55, no. 1, pp. 168–77, Jan. 2003, doi: 10.1016/s0360-3016(02)03797-5.
G. C. Stachelek et al., ‘Predictors of Recurrence and Patterns of Initial Failure in Localized Ewing Sarcoma: A Contemporary 20-Year Experience.’, Sarcoma, vol. 2021, p. 6681741, 2021, doi: 10.1155/2021/6681741.
M. A. Chihak, S. K. Ahmed, D. H. Lachance, A. A. Nageswara Rao, and N. N. Laack, ‘Patterns of failure and optimal radiotherapy target volumes in primary intradural extramedullary Ewing sarcoma.’, Acta Oncol, vol. 55, no. 8, pp. 1057–61, Aug. 2016, doi: 10.3109/0284186X.2016.1150605.
K. P. Ng, G. Potikyan, R. O. V Savene, C. T. Denny, V. N. Uversky, and K. A. W. Lee, ‘Multiple aromatic side chains within a disordered structure are critical for transcription and transforming activity of EWS family oncoproteins.’, Proc Natl Acad Sci U S A, vol. 104, no. 2, pp. 479–84, Jan. 2007, doi: 10.1073/pnas.0607007104.
M. Watanabe et al., ‘Screening for DAX1 / EWS‐FLI1 functional inhibitors identified dihydroorotate dehydrogenase as a therapeutic target for Ewing’s sarcoma’, Cancer Med, vol. 12, no. 8, pp. 9802–9814, Apr. 2023, doi: 10.1002/cam4.5741.
H. V. Erkizan, V. N. Uversky, and J. A. Toretsky, ‘Oncogenic Partnerships: EWS-FLI1 Protein Interactions Initiate Key Pathways of Ewing’s Sarcoma’, Clinical Cancer Research, vol. 16, no. 16, pp. 4077–4083, Aug. 2010, doi: 10.1158/1078-0432.CCR-09-2261.
T. G. P. Grünewald et al., ‘Ewing sarcoma’, Nat Rev Dis Primers, vol. 4, no. 1, p. 5, Jul. 2018, doi: 10.1038/s41572-018-0003-x.
H. V Erkizan et al., ‘A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing’s sarcoma’, Nat Med, vol. 15, no. 7, pp. 750–756, Jul. 2009, doi: 10.1038/nm.1983.
H. Gong, B. Xue, J. Ru, G. Pei, and Y. Li, ‘Targeted Therapy for EWS-FLI1 in Ewing Sarcoma’, Cancers (Basel), vol. 15, no. 16, p. 4035, Aug. 2023, doi: 10.3390/cancers15164035.
S. P. Selvanathan et al., ‘Oncogenic fusion protein EWS-FLI1 is a network hub that regulates alternative splicing’, Proceedings of the National Academy of Sciences, vol. 112, no. 11, Mar. 2015, doi: 10.1073/pnas.1500536112.
Y. Liu et al., ‘Mithramycin 2′-Oximes with Improved Selectivity, Pharmacokinetics, and Ewing Sarcoma Antitumor Efficacy’, J Med Chem, vol. 63, no. 22, pp. 14067–14086, Nov. 2020, doi: 10.1021/acs.jmedchem.0c01526.
B. A. Nacev et al., ‘The epigenomics of sarcoma’, Nat Rev Cancer, vol. 20, no. 10, pp. 608–623, Oct. 2020, doi: 10.1038/s41568-020-0288-4.
S. Sánchez-Molina et al., ‘Ewing Sarcoma Meets Epigenetics, Immunology and Nanomedicine: Moving Forward into Novel Therapeutic Strategies’, Cancers (Basel), vol. 14, no. 21, p. 5473, Nov. 2022, doi: 10.3390/cancers14215473.
S. Sánchez-Molina et al., ‘RING1B recruits EWSR1-FLI1 and cooperates in the remodeling of chromatin necessary for Ewing sarcoma tumorigenesis’, Sci Adv, vol. 6, no. 43, Oct. 2020, doi: 10.1126/sciadv.aba3058.
S. Kailayangiri et al., ‘EZH2 Inhibition in Ewing Sarcoma Upregulates GD2 Expression for Targeting with Gene-Modified T Cells’, Molecular Therapy, vol. 27, no. 5, pp. 933–946, May 2019, doi: 10.1016/j.ymthe.2019.02.014.
T. Hensel et al., ‘Targeting the EWS-ETS transcriptional program by BET bromodomain inhibition in Ewing sarcoma’, Oncotarget, vol. 7, no. 2, pp. 1451–1463, Jan. 2016, doi: 10.18632/oncotarget.6385.
V. Albarrán et al., ‘Receptor Tyrosine Kinase Inhibitors for the Treatment of Recurrent and Unresectable Bone Sarcomas’, Int J Mol Sci, vol. 23, no. 22, p. 13784, Nov. 2022, doi: 10.3390/ijms232213784.
S. Attia et al., ‘A phase II trial of regorafenib in patients with advanced Ewing sarcoma and related tumors of soft tissue and bone: SARC024 trial results’, Cancer Med, vol. 12, no. 2, pp. 1532–1539, Jan. 2023, doi: 10.1002/cam4.5044.
M. Casanova et al., ‘Regorafenib plus Vincristine and Irinotecan in Pediatric Patients with Recurrent/Refractory Solid Tumors: An Innovative Therapy for Children with Cancer Study’, Clinical Cancer Research, vol. 29, no. 21, pp. 4341–4351, Nov. 2023, doi: 10.1158/1078-0432.CCR-23-0257.
H. M. Amin et al., ‘IGF-1R/mTOR Targeted Therapy for Ewing Sarcoma: A Meta-Analysis of Five IGF-1R-Related Trials Matched to Proteomic and Radiologic Predictive Biomarkers’, Cancers (Basel), vol. 12, no. 7, p. 1768, Jul. 2020, doi: 10.3390/cancers12071768.
S. G. DuBois et al., ‘Randomized Phase III Trial of Ganitumab With Interval-Compressed Chemotherapy for Patients With Newly Diagnosed Metastatic Ewing Sarcoma: A Report From the Children’s Oncology Group’, Journal of Clinical Oncology, vol. 41, no. 11, pp. 2098–2107, Apr. 2023, doi: 10.1200/JCO.22.01815.
K. L. Davis et al., ‘A Phase I/II Trial of Nivolumab plus Ipilimumab in Children and Young Adults with Relapsed/Refractory Solid Tumors: A Children’s Oncology Group Study ADVL1412’, Clinical Cancer Research, vol. 28, no. 23, pp. 5088–5097, Dec. 2022, doi: 10.1158/1078-0432.CCR-22-2164.
H. Bareke et al., ‘Prospects and Advances in Adoptive Natural Killer Cell Therapy for Unmet Therapeutic Needs in Pediatric Bone Sarcomas’, Int J Mol Sci, vol. 24, no. 9, p. 8324, May 2023, doi: 10.3390/ijms24098324.
S. Kailayangiri et al., ‘Targeting Ewing sarcoma with activated and GD2-specific chimeric antigen receptor-engineered human NK cells induces upregulation of immune-inhibitory HLA-G’, Oncoimmunology, vol. 6, no. 1, p. e1250050, Jan. 2017, doi: 10.1080/2162402X.2016.1250050.
S. Claveau et al., ‘Delivery of siRNA to Ewing Sarcoma Tumor Xenografted on Mice, Using Hydrogenated Detonation Nanodiamonds: Treatment Efficacy and Tissue Distribution’, Nanomaterials, vol. 10, no. 3, p. 553, Mar. 2020, doi: 10.3390/nano10030553.
F. Y. Sabei et al., ‘A targeted combinatorial therapy for Ewing’s sarcoma’, Nanomedicine, vol. 37, p. 102446, Oct. 2021, doi: 10.1016/j.nano.2021.102446.
J. A. Naumann et al., ‘SN-38 Conjugated Gold Nanoparticles Activated by Ewing Sarcoma Specific mRNAs Exhibit In Vitro and In Vivo Efficacy’, Bioconjug Chem, vol. 29, no. 4, pp. 1111–1118, Apr. 2018, doi: 10.1021/acs.bioconjchem.7b00774.
S. Tsibulnikov et al., ‘Ewing sarcoma treatment: a gene therapy approach’, Cancer Gene Ther, vol. 30, no. 8, pp. 1066–1071, Aug. 2023, doi: 10.1038/s41417-023-00615-0.
R. Acharya, ‘The recent progresses in shRNA-nanoparticle conjugate as a therapeutic approach’, Materials Science and Engineering: C, vol. 104, p. 109928, Nov. 2019, doi: 10.1016/j.msec.2019.109928.
C. Schaefer et al., ‘Target discovery screens using pooled shRNA libraries and next-generation sequencing: A model workflow and analytical algorithm’, PLoS One, vol. 13, no. 1, p. e0191570, Jan. 2018, doi: 10.1371/journal.pone.0191570.
U. Dirksen et al., ‘High-Dose Chemotherapy Compared With Standard Chemotherapy and Lung Radiation in Ewing Sarcoma With Pulmonary Metastases: Results of the European Ewing Tumour Working Initiative of National Groups, 99 Trial and EWING 2008.’, J Clin Oncol, vol. 37, no. 34, pp. 3192–3202, Dec. 2019, doi: 10.1200/JCO.19.00915.
M. E. Abate et al., ‘Whole Lung Irradiation after High-Dose Busulfan/Melphalan in Ewing Sarcoma with Lung Metastases: An Italian Sarcoma Group and Associazione Italiana Ematologia Oncologia Pediatrica Joint Study’, Cancers (Basel), vol. 13, no. 11, p. 2789, Jun. 2021, doi: 10.3390/cancers13112789.
R. Koch et al., ‘High-Dose Treosulfan and Melphalan as Consolidation Therapy Versus Standard Therapy for High-Risk (Metastatic) Ewing Sarcoma’, Journal of Clinical Oncology, vol. 40, no. 21, pp. 2307–2320, Jul. 2022, doi: 10.1200/JCO.21.01942.
J. Xu et al., ‘Long-term outcome and relapse patterns in Ewing sarcoma patients with extensive lung/pleural metastases after a complete response to systemic therapy’, BMC Cancer, vol. 22, no. 1, p. 500, Dec. 2022, doi: 10.1186/s12885-022-09618-w.
W. Mao, F. Deng, D. Wang, L. Gao, and X. Shi, ‘Treatment of advanced gallbladder cancer: A SEER‐based study’, Cancer Med, vol. 9, no. 1, pp. 141–150, Jan. 2020, doi: 10.1002/cam4.2679.
S. Parsai et al., ‘Spine radiosurgery in adolescents and young adults: early outcomes and toxicity in patients with metastatic Ewing sarcoma and osteosarcoma’, J Neurosurg Spine, vol. 32, no. 4, pp. 491–498, Apr. 2020, doi: 10.3171/2019.9.SPINE19377.
K. Bailey et al., ‘Emerging novel agents for patients with advanced Ewing sarcoma: a report from the Children’s Oncology Group (COG) New Agents for Ewing Sarcoma Task Force’, F1000Res, vol. 8, p. 493, Apr. 2019, doi: 10.12688/f1000research.18139.1.
H. Halalsheh et al., ‘Clinical impact of post‐induction resolution of pulmonary lesions in metastatic Ewing sarcoma’, Pediatr Blood Cancer, vol. 67, no. 4, Apr. 2020, doi: 10.1002/pbc.28150.
V. Subbiah et al., ‘Antitumor Activity of Lurbinectedin, a Selective Inhibitor of Oncogene Transcription, in Patients with Relapsed Ewing Sarcoma: Results of a Basket Phase II Study’, Clinical Cancer Research, vol. 28, no. 13, pp. 2762–2770, Jul. 2022, doi: 10.1158/1078-0432.CCR-22-0696.
A. Dang, X. Feng, J. Hamm, C. L. Holloway, and P. T. Truong, ‘Survival Outcomes in Metastatic Ewing Sarcoma Treated With Whole-Lung Radiation’, Cureus, Jul. 2022, doi: 10.7759/cureus.26750.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Wojciech Zezuliński, Filip Woliński, Julia Zyśk, Mateusz Korga, Jakub Klas, Jacek Baj, Eliasz Dzierżyński

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 78
Number of citations: 0