Red Wine: Poison or the Secret to Eternal Youth?
DOI:
https://doi.org/10.12775/QS.2024.28.56812Keywords
red wine, polyphenols, resveratrol, cardioprotective effectAbstract
Red wine has been the subject of extensive research due to its complex polyphenolic composition and potential health effects on the human body. This review examines the cardioprotective effects of red wine, highlighting the role of polyphenols in promoting cardiovascular health, increasing insulin sensitivity, and offering protective benefits against type 2 diabetes and neurodegenerative diseases. Despite these potential benefits, red wine consumption is also associated with several adverse effects, including liver damage, headaches, and increased risk of depression. This duality highlights the importance of moderation in alcohol consumption..
References
Renaud S, de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. The Lancet [Internet]. 1992 Jun [cited 2024 Nov 27];(8808):1523–6. Available from: http://dx.doi.org/10.1016/0140-6736(92)91277-F
Robinson J. The Oxford Companion to Wine [Internet]. Harding J, editor. Oxford University Press; 2006. Available from: http://dx.doi.org/10.1093/acref/9780198609902.001.0001
Moreno-Arribas, M. Victoria, and M. Carmen Polo, editors. Wine Chemistry and Biochemistry. Springer New York, 2009, http://dx.doi.org/10.1007/978-0-387-74118-5.
Haseeb S, Alexander B, Baranchuk A. Wine and Cardiovascular Health. Circulation [Internet]. 2017 Oct 10 [cited 2024 Nov 27];(15):1434–48. Available from: http://dx.doi.org/10.1161/CIRCULATIONAHA.117.030387
Clarke O. The Essential Wine Book. Viking Adult, 1985.
Lyu W, Rodriguez D, Ferruzzi MG, et al. Chemical, Manufacturing, and Standardization Controls of Grape Polyphenol Dietary Supplements in Support of a Clinical Study: Mass Uniformity, Polyphenol Dosage, and Profiles. Frontiers in Nutrition [Internet]. 2021 Dec 16; Available from: http://dx.doi.org/10.3389/fnut.2021.780226
Waterhouse AL. Wine Phenolics. Annals of the New York Academy of Sciences [Internet]. 2002 May;(1):21–36. Available from: http://dx.doi.org/10.1111/j.1749-6632.2002.tb02903.x
Luengo MT. Flavonoides. Offarm: farmacia y sociedad. 2002;21(4):108-13
Di Lorenzo C, Colombo F, Biella S, Stockley C, Restani P. Polyphenols and Human Health: The Role of Bioavailability. Nutrients [Internet]. 2021 Jan 19 [cited 2024 Nov 27];(1):273. Available from: http://dx.doi.org/10.3390/nu13010273
Bertelli A, Biagi M, Corsini M, Baini G, Cappellucci G, Miraldi E. Polyphenols: From Theory to Practice. Foods [Internet]. 2021 Oct 27;(11):2595. Available from: http://dx.doi.org/10.3390/foods10112595
Şöhretoğlu D, Baran MY, Arroo R, Kuruüzüm-Uz A. Recent advances in chemistry, therapeutic properties and sources of polydatin. Phytochemistry Reviews [Internet]. 2018 May 10;(5):973–1005. Available from: http://dx.doi.org/10.1007/s11101-018-9574-0
Lanzilli G, Cottarelli A, Nicotera G, Guida S, Ravagnan G, Fuggetta MP. Anti-inflammatory Effect of Resveratrol and Polydatin by In Vitro IL-17 Modulation. Inflammation [Internet]. 2011 Mar 3 [cited 2024 Nov 27];(1):240–8. Available from: http://dx.doi.org/10.1007/s10753-011-9310-z
Li H, Shi B, Li Y, Yin F. Polydatin inhibits cell proliferation and induces apoptosis in laryngeal cancer and HeLa cells via suppression of the PDGF/AKT signaling pathway. Journal of Biochemical and Molecular Toxicology [Internet]. 2017 Mar 7;(7). Available from: http://dx.doi.org/10.1002/jbt.21900
Liu H, Zhao S, Zhang Y, et al. Reactive oxygen species-mediated endoplasmic reticulum stress and mitochondrial dysfunction contribute to polydatin-induced apoptosis in human nasopharyngeal carcinoma CNE cells. Journal of Cellular Biochemistry [Internet]. 2011 Oct 22 ;12):3695–703. Available from: http://dx.doi.org/10.1002/jcb.23303
Karami A, Fakhri S, Kooshki L, Khan H. Polydatin: Pharmacological Mechanisms, Therapeutic Targets, Biological Activities, and Health Benefits. Molecules [Internet]. 2022 Oct 1;(19):6474. Available from: http://dx.doi.org/10.3390/molecules27196474
Chen Y, Niu J, Li L, et al. Polydatin executes anticancer effects against glioblastoma multiforme by inhibiting the EGFR-AKT/ERK1/2/STAT3-SOX2/Snail signaling pathway. Life Sciences [Internet]. 2020 Oct; 118158. Available from: http://dx.doi.org/10.1016/j.lfs.2020.118158
Guerrero RF, Cantos-Villar E. Demonstrating the efficiency of sulphur dioxide replacements in wine: A parameter review. Trends in Food Science & Technology [Internet]. 2015 Mar;(1):27–43. Available from: http://dx.doi.org/10.1016/j.tifs.2014.11.004
Vally H, Misso NLA, Madan V. Clinical effects of sulphite additives. Clinical & Experimental Allergy [Internet]. 2009 Oct 2;(11):1643–51. Available from: http://dx.doi.org/10.1111/j.1365-2222.2009.03362.x
IOV—International Organisation of Vine and Wine. http://www.oiv.int/
O’Keefe JH, Bhatti SK, Bajwa A, DiNicolantonio JJ, Lavie CJ. Alcohol and Cardiovascular Health: The Dose Makes the Poison…or the Remedy. Mayo Clinic Proceedings [Internet]. 2014 Mar;(3):382–93. Available from: http://dx.doi.org/10.1016/j.mayocp.2013.11.005
What Is A Standard Drink? | National Institute on Alcohol Abuse and Alcoholism (NIAAA) [Internet]. Available from: https://www.niaaa.nih.gov/alcohols-effects-health/overview-alcohol-consumption/what-standard-drink
Guidance on Alcoholic Beverages in the Dietary Guidelines for Americans | Dietary Guidelines for Americans [Internet]. Home | Dietary Guidelines for Americans. Available from: https://www.dietaryguidelines.gov/alcohol/info
Wojtowicz JS. Long-Term Health Outcomes of Regular, Moderate Red Wine Consumption. Cureus [Internet]. 2023 Oct 10; Available from: http://dx.doi.org/10.7759/cureus.46786
Lombardo M, Feraco A, Camajani E, Caprio M, Armani A. Health Effects of Red Wine Consumption: A Narrative Review of an Issue That Still Deserves Debate. Nutrients [Internet]. 2023 Apr 16;(8):1921. Available from: http://dx.doi.org/10.3390/nu15081921
Schrieks IC, van den Berg R, Sierksma A, Beulens JWJ, Vaes WHJ, Hendriks HFJ. Effect of Red Wine Consumption on Biomarkers of Oxidative Stress. Alcohol and Alcoholism [Internet]. 2012 Aug 2 [cited 2024 Dec 1];(2):153–9. Available from: http://dx.doi.org/10.1093/alcalc/ags086
Modun D, Music I, Vukovic J, et al. The increase in human plasma antioxidant capacity after red wine consumption is due to both plasma urate and wine polyphenols. Atherosclerosis [Internet]. 2008 Mar [cited 2024 Dec 1];(1):250–6. Available from: http://dx.doi.org/10.1016/j.atherosclerosis.2007.04.002
Milutinović A, Šuput D, Zorc-Pleskovič R. Pathogenesis of atherosclerosis in the tunica intima, media, and adventitia of coronary arteries: An updated review. Bosnian Journal of Basic Medical Sciences [Internet]. 2019 Aug 27 [cited 2024 Dec 1]; Available from: http://dx.doi.org/10.17305/bjbms.2019.4320
Wang D, Wang Z, Zhang L, Wang Y. Roles of Cells from the Arterial Vessel Wall in Atherosclerosis. Mediators of Inflammation [Internet]. 2017 [cited 2024 Dec 1];1–9. Available from: http://dx.doi.org/10.1155/2017/8135934
Rajendran NK, Liu W, Chu CC, Cahill PA, Redmond EM. Moderate dose alcohol protects against serum amyloid protein A1‐induced endothelial dysfunction via both notch‐dependent and notch‐independent pathways. Alcoholism: Clinical and Experimental Research [Internet]. 2021 Sep 29;(11):2217–30. Available from: http://dx.doi.org/10.1111/acer.14706
Markoski MM, Garavaglia J, Oliveira A, Olivaes J, Marcadenti A. Molecular Properties of Red Wine Compounds and Cardiometabolic Benefits. Nutrition and Metabolic Insights [Internet]. 2016 Jan; Available from: http://dx.doi.org/10.4137/NMI.S32909
Garrido J, Borges F. Wine and grape polyphenols — A chemical perspective. Food Research International [Internet]. 2013 Dec [cited 2024 Dec 8];(2):1844–58. Available from: http://dx.doi.org/10.1016/j.foodres.2013.08.002
D’Archivio M, Filesi C, Varì R, Scazzocchio B, Masella R. Bioavailability of the Polyphenols: Status and Controversies. International Journal of Molecular Sciences [Internet]. 2010 Mar 31 [cited 2024 Dec 8];(4):1321–42. Available from: http://dx.doi.org/10.3390/ijms11041321
McCullough ML, Peterson JJ, Patel R, Jacques PF, Shah R, Dwyer JT. Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adults. The American Journal of Clinical Nutrition [Internet]. 2012 Feb [cited 2024 Dec 8];(2):454–64. Available from: http://dx.doi.org/10.3945/ajcn.111.016634
Ramirez-Sanchez I, Maya L, Ceballos G, Villarreal F. (−)-Epicatechin Activation of Endothelial Cell Endothelial Nitric Oxide Synthase, Nitric Oxide, and Related Signaling Pathways. Hypertension [Internet]. 2010 Jun [cited 2024 Dec 8];(6):1398–405. Available from: http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.147892
Heiss C, Keen CL, Kelm M. Flavanols and cardiovascular disease prevention. European Heart Journal [Internet]. 2010 Sep 18 [cited 2024 Dec 8];(21):2583–92. Available from: http://dx.doi.org/10.1093/eurheartj/ehq332
da Luz PL, Coimbra S, Favarato D, et al. Coronary artery plaque burden and calcium scores in healthy men adhering to long-term wine drinking or alcohol abstinence. Brazilian Journal of Medical and Biological Research [Internet]. 2014 Aug [cited 2024 Dec 1];(8):697–705. Available from: http://dx.doi.org/10.1590/1414-431x20143880
Magnus P, Bakke E, Hoff DA, Høiseth G, et al. Controlling for High-Density Lipoprotein Cholesterol Does Not Affect the Magnitude of the Relationship Between Alcohol and Coronary Heart Disease. Circulation [Internet]. 2011 Nov 22;(21):2296–302. Available from: http://dx.doi.org/10.1161/CIRCULATIONAHA.111.036491
Marques-Vidal P, Bochud M, Paccaud F, et al. No interaction between alcohol consumption and HDL-related genes on HDL cholesterol levels. Atherosclerosis [Internet]. 2010 Aug [cited 2024 Dec 1];(2):551–7. Available from: http://dx.doi.org/10.1016/j.atherosclerosis.2010.04.001
Magyar K, Halmosi R, Palfi A, et al. Cardioprotection by resveratrol: A human clinical trial in patients with stable coronary artery disease. Clinical Hemorheology and Microcirculation [Internet]. 2012 [cited 2024 Dec 8];(3):179–87. Available from: http://dx.doi.org/10.3233/CH-2011-1424
D’Onofrio N, Servillo L, Balestrieri ML. SIRT1 and SIRT6 Signaling Pathways in Cardiovascular Disease Protection. Antioxidants & Redox Signaling [Internet]. 2018 Mar 10 [cited 2024 Dec 8];(8):711–32. Available from: http://dx.doi.org/10.1089/ars.2017.7178
D’Onofrio N, Martino E, Chianese G, Coppola F, Picariello L, Moio L, et al. Phenolic Profiles of Red Wine Relate to Vascular Endothelial Benefits Mediated by SIRT1 and SIRT6. International Journal of Molecular Sciences [Internet]. 2021 May 26 [cited 2024 Dec 8];(11):5677. Available from: http://dx.doi.org/10.3390/ijms22115677
Ramadori G, Gautron L, Fujikawa T, Vianna CR, Elmquist JK, Coppari R. Central Administration of Resveratrol Improves Diet-Induced Diabetes. Endocrinology [Internet]. 2009 Oct 9 [cited 2024 Dec 8];(12):5326–33. Available from: http://dx.doi.org/10.1210/en.2009-0528
Chiva-Blanch G, Urpi-Sarda M, Ros E, Valderas-Martinez P, Casas R, Arranz S, et al. Effects of red wine polyphenols and alcohol on glucose metabolism and the lipid profile: A randomized clinical trial. Clinical Nutrition [Internet]. 2013 Apr;(2):200–6. Available from: http://dx.doi.org/10.1016/j.clnu.2012.08.022
Brasnyó P, Molnár GA, Mohás M, Markó L, Laczy B, Cseh J, et al. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. British Journal of Nutrition [Internet]. 2011 Mar 9 [cited 2024 Dec 8];(3):383–9. Available from: http://dx.doi.org/10.1017/S0007114511000316
Baliunas DO, Taylor BJ, Irving H, Roerecke M, Patra J, Mohapatra S, et al. Alcohol as a Risk Factor for Type 2 Diabetes. Diabetes Care [Internet]. 2009 Nov 1 [cited 2024 Dec 8];(11):2123–32. Available from: http://dx.doi.org/10.2337/dc09-0227
Buljeta I, Pichler A, Šimunović J, Kopjar M. Beneficial Effects of Red Wine Polyphenols on Human Health: Comprehensive Review. Current Issues in Molecular Biology. 2023; 45(2):782-798. https://doi.org/10.3390/cimb45020052
Snopek L, Mlcek J, Sochorova L, Baron M, Hlavacova I, Jurikova T, Kizek R, Sedlackova E, Sochor J. Contribution of Red Wine Consumption to Human Health Protection. Molecules. 2018; 23(7):1684. https://doi.org/10.3390/molecules23071684
Vejarano R, Luján-Corro M. Red Wine and Health: Approaches to Improve the Phenolic Content During Winemaking. Frontiers in Nutrition [Internet]. 2022 May 25 [cited 2024 Dec 8]; Available from: http://dx.doi.org/10.3389/fnut.2022.890066
Devi A, Levin M, Waterhouse AL. Inhibition of ALDH2 by quercetin glucuronide suggests a new hypothesis to explain red wine headaches. Sci Rep. 2023;13(1):19503. Published 2023 Nov 20. doi:10.1038/s41598-023-46203-y
Costa RM, Madeira A, Barata M, Wittmann M. The power of Dionysus-Effects of red wine on consciousness in a naturalistic setting. PLoS One. 2021;16(9):e0256198. Published 2021 Sep 8. doi:10.1371/journal.pone.0256198
Gea A, Beunza JJ, Estruch R, et al. Alcohol intake, wine consumption and the development of depression: the PREDIMED study. BMC Med. 2013;11:192. Published 2013 Aug 30. doi:10.1186/1741-7015-11-192
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Karolina Makowska, Laura Lis, Sebastian Perwejnis
![Creative Commons License](http://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 47
Number of citations: 0