Advancements in Corneal Transplantation: Addressing Rejection Risks, Innovations and Challenges
DOI:
https://doi.org/10.12775/QS.2024.35.56443Keywords
corneal graft rejection, corneal transplant rejection, corneal transplantation rejection, pathophysiology of corneal graft rejection, bioengineered corneal materialsAbstract
Introduction and Objective:
Corneal transplantation is an increasingly common surgical procedure, with lamellar keratoplasty now favored over penetrating keratoplasty due to its advantages in outcomes and precision.
Review methods: A literature review utilizing databases like Scopus, Google Scholar, and PubMed, with keywords such as "corneal transplantation rejection" and "high risk of rejection," underscores the need for advancements in understanding and managing graft rejection.
Brief knowledge status: Key insights highlight the importance of deeper exploration into the immunological mechanisms of rejection to refine therapeutic strategies. The development of bioengineered materials like acellular porcine corneal stroma (APCS) offers a promising solution to the global donor shortage, though further validation of their clinical utility is needed. Complementary therapies such as amniotic membrane transplantation show promise in mitigating graft failure and treating corneal surface disorders due to their anti-inflammatory and regenerative properties. Moreover, comparative studies suggest that advanced keratoplasty techniques, such as Descemet Membrane Endothelial Keratoplasty (DMEK), may achieve lower rejection rates compared to alternatives like Descemet Stripping Automated Endothelial Keratoplasty (DSAEK).
Discussion: Future priorities include advancing drug delivery systems, ensuring the feasibility and accessibility of bioengineered materials, and conducting large-scale multicenter trials to validate novel treatments and surgical methods across diverse populations.
Summary: Addressing these challenges is particularly crucial for high-risk and pediatric patients, with the ultimate goal of reducing graft failure rates and the necessity for repeat interventions.
References
Edelstein, S. L., DeMatteo, J., Stoeger, C. G., Macsai, M. S., & Wang, C. H. (2016). Report of the Eye Bank Association of America Medical Review Subcommittee on Adverse Reactions Reported From 2007 to 2014. Cornea, 35(7), 917–926. https://doi.org/10.1097/ICO.0000000000000869.
Anshu A, Price MO, Price FW Jr. Risk of corneal transplant rejection significantly reduced with Descemet's membrane endothelial keratoplasty. Ophthalmology. 2012 Mar;119(3):536-40. doi: 10.1016/j.ophtha.2011.09.019. Epub 2012 Jan 3. PMID: 22218143.
Levin, L. A., and D. M. Albert. 2010. Ocular Disease: Mechanisms and Management, 1st Ed. R. Gabbedy and B. Davie, eds. Saunders Elsevier, Philadelphia, PA, p. 65–71.
Price FW Jr, Whitson WE, Collins KS, Marks RG. Five-year corneal graft survival. A large, single-center patient cohort. Arch Ophthalmol. 1993 Jun;111(6):799-805. doi: 10.1001/archopht.1993.01090060087029. PMID: 8512481.
The collaborative corneal transplantation studies (CCTS). Effectiveness of histocompatibility matching in high-risk corneal transplantation. The Collaborative Corneal Transplantation Studies Research Group. Arch Ophthalmol. 1992 Oct;110(10):1392-403. PMID: 1417537.
Dana MR, Streilein JW. Loss and restoration of immune privilege in eyes with corneal neovascularization. Invest Ophthalmol Vis Sci. 1996 Nov;37(12):2485-94. PMID: 8933765.
Zhu J, Inomata T, Di Zazzo A et al. Role of Immune Cell Diversity and Heterogeneity in Corneal Graft Survival: A Systematic Review and Meta-Analysis. J Clin Med. 2021 Oct 12;10(20):4667. https://doi.org/10.3390/jcm10204667
Downward L, Ahmed M, Hopkinson C et al. Endothelial failure and rejection in recipients of corneas from the same donor. BMJ Open Ophthalmol. 2022 Aug;7(1):e000965. https://doi.org/10.1136/bmjophth-2021-000965
Maharana PK, Mandal S, Kaweri L et al. Immunopathogenesis of corneal graft rejection. Indian J Ophthalmol. 2023 May;71(5):1733-1738.
https://doi.org/10.4103/IJO.IJO_2866_22
Marino J, Paster J, Benichou G. Allorecognition by T Lymphocytes and Allograft Rejection. Front Immunol. 2016 Dec 14;7:582. https://doi.org/10.3389/fimmu.2016.00582
Sachdeva, G. S., Cabada, J. P., Karim, S. S., Kahandawa, D. L., Thomas, K. A., Kumar, A., Barry, R. J., & Butt, G. F. (2021). Effectiveness of matching human leukocyte antigens (HLA) in corneal transplantation: a systematic review protocol. Systematic reviews, 10(1), 150. https://doi.org/10.1186/s13643-021-01704-7
Jiang, T., Li, M., & Zhang, M. (2022). The correlation between human leucocyte antigen amino acid residue matching before keratoplasty and postoperative rejection: a systematic review and meta-analysis. Annals of palliative medicine, 11(3), 1112–1120. https://doi.org/10.21037/apm-22-268
Zhong W, Montana M, Santosa SM, Isjwara ID, Huang YH, Han KY, et al. Angiogenesis and lymphangiogenesis in corneal transplantation-A review. Survey of Ophthalmology [Internet]. 2018 Jul 1 [cited 2022 May 6];63(4):453–79. Available from: https://pubmed.ncbi.nlm.nih.gov/29287709/
Yu, K., Lian, X. F., Jiang, X. Y., & Zhou, S. Y. (2021). Efficacy of Immunosuppressants in High Rejection Risk Keratoplasty: A Meta-Analysis of Comparative Studies. Cornea, 40(6), 800–807. https://doi.org/10.1097/ICO.0000000000002709
Gorman, B. R., Francis, M., Nealon, C. L., Halladay, C. W., Duro, N., Markianos, K., Genovese, G., Hysi, P. G., Choquet, H., Afshari, N. A., Li, Y. J., VA Million Veteran Program, Gaziano, J. M., Hung, A. M., Wu, W. C., Greenberg, P. B., Pyarajan, S., Lass, J. H., Peachey, N. S., & Iyengar, S. K. (2024). A multi-ancestry GWAS of Fuchs corneal dystrophy highlights the contributions of laminins, collagen, and endothelial cell regulation. Communications biology, 7(1), 418. https://doi.org/10.1038/s42003-024-06046-3
Qi, X., Wang, L., Zhang, X., Liu, M., & Gao, H. (2022). Topical administration of tacrolimus and corticosteroids in tapering doses is effective in preventing immune rejection in high-risk keratoplasty: a 5-year follow-up study. BMC ophthalmology, 22(1), 101. https://doi.org/10.1186/s12886-022-02318-w
Fujio, K.; Sung, J.; Nakatani, S.; Yamamoto, K.; Iwagami, M.; Fujimoto, K.; Shokirova, H.; Okumura, Y.; Akasaki, Y.; Nagino, K.; et al. Characteristics and Clinical Ocular Manifestations in Patients with Acute Corneal Graft Rejection after Receiving the COVID-19 Vaccine: A Systematic Review. J. Clin. Med. 2022, 11, 4500. https://doi.org/10.3390/jcm11154500
Lockington, D., Lee, B., Jeng, B. H., Larkin, D. F. P., & Hjortdal, J. (2021). Survey of Corneal Surgeons' Attitudes Regarding Keratoplasty Rejection Risk Associated With Vaccinations. Cornea, 40(12), 1541–1547. https://doi.org/10.1097/ICO.0000000000002662
Lee, E. H., & Li, J. Y. (2022). Immunization-Associated Corneal Transplantation Rejection: A Review. Cornea, 41(5), 660–663. https://doi.org/10.1097/ICO.0000000000002898
Meng T, Zheng J, Shin CS, Gao N, Divya Bande, Hadi Sudarjat, et al. Combination Nanomedicine Strategy for Preventing High-Risk Corneal Transplantation Rejection. ACS Nano. 2024 Jul 29;18(31):20679–93.
21. Decellularization of porcine corneas and repopulation with human corneal cells for tissue‐engineered xenografts [Internet]. Google.co.il. 2024 [cited 2024 Nov 25].
Li, S., Xiao, P., Deng, Y., Li, M., Wang, Q., & Yuan, J. (2021). Acellular Porcine Corneal Stroma May Not Be Optimal for Peripheral Keratoplasty: Reports of 2 Cases. Cornea, 40(4), 502–505. https://doi.org/10.1097/ICO.0000000000002496
Chen, L. N., Hao, J. L., Liu, X. F., Zhou, D. D., Pant, O. P., Liu, X. Y., Liu, H. F., Liu, H. W., & Lu, C. W. (2022). Rejection of Acellular Porcine Corneal Stroma Transplantation During Coronavirus Disease 2019 Pandemic. The Journal of craniofacial surgery, 33(5), 1300–1302. https://doi.org/10.1097/SCS.0000000000008324
Zheng, Q., Zhang, Y., Ren, Y., Zhao, Z., Hua, S., Li, J., Wang, H., Ye, C., Kim, A. D., Wang, L., & Chen, W. (2021). Deep anterior lamellar keratoplasty with cross-linked acellular porcine corneal stroma to manage fungal keratitis. Xenotransplantation, 28(2), e12655. https://doi.org/10.1111/xen.12655
Zheng, J., Huang, X., Zhang, Y., Wang, Y., Qin, Q., Lin, L., Jin, X., Lam, C., & Zhang, J. (2019). Short-term results of acellular porcine corneal stroma keratoplasty for herpes simplex keratitis. Xenotransplantation, 26(4), e12509. https://doi.org/10.1111/xen.12509
Roumeau, S., Dutheil, F., Sapin, V., Baker, J. S., Watson, S. L., Pereira, B., Chiambaretta, F., & Navel, V. (2022). Efficacy of treatments for neurotrophic keratopathy: a systematic review and meta-analysis. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie, 260(8), 2623–2637. https://doi.org/10.1007/s00417-022-05602-z
Baig IF, Le NT, Zaina Al-Mohtaseb. Amniotic membrane transplantation: an updated clinical review for the ophthalmologist. Annals of Eye Science [Internet]. 2023 Jun 1 [cited 2024 Aug 22];8:5–5. Available from: https://aes.amegroups.org/article/view/7312/html
Ting, D. S. J., Henein, C., Said, D. G., & Dua, H. S. (2021). Amniotic membrane transplantation for infectious keratitis: a systematic review and meta-analysis. Scientific reports, 11(1), 13007. https://doi.org/10.1038/s41598-021-92366-x
Qi, X., Wang, L., Zhang, X., Liu, M., & Gao, H. (2022). Topical administration of tacrolimus and corticosteroids in tapering doses is effective in preventing immune rejection in high-risk keratoplasty: a 5-year follow-up study. BMC ophthalmology, 22(1), 101. https://doi.org/10.1186/s12886-022-02318-w
Marques, R. E., Leal, I., Guerra, P. S., Barão, R. C., Quintas, A. M., & Rodrigues, W. (2022). Topical corticosteroids with topical cyclosporine A versus topical corticosteroids alone for immunological corneal graft rejection. European journal of ophthalmology, 32(3), 1469–1481. https://doi.org/10.1177/11206721211023320
Din, N., Cohen, E., Popovic, M., Mimouni, M., Trinh, T., Gouvea, L., Alshaker, S., Ong Tone, S., Chan, C. C., & Slomovic, A. R. (2022). Surgical Management of Fuchs Endothelial Corneal Dystrophy: A Treatment Algorithm and Individual Patient Meta-Analysis of Descemet Stripping Only. Cornea, 41(9), 1188–1195. https://doi.org/10.1097/ICO.0000000000002975
Magnier F, Dutheil F, Pereira B, Watson SL, Baker JS, Chiambaretta F, et al. Preventive treatment of allograft rejection after endothelial keratoplasty: A systematic review and meta‐analysis. Acta Ophthalmologica. 2022 Apr 11;100(5).
Dimtsas, G. S., & Moschos, M. M. (2023). Ultrathin-Descemet Stripping Automated Endothelial Keratoplasty Versus Descemet Membrane Endothelial Keratoplasty: A Systematic Review and Meta-analysis. In vivo (Athens, Greece), 37(1), 400–409. https://doi.org/10.21873/invivo.13092
Hurley, D. J., Murtagh, P., & Guerin, M. (2023). Ultrathin Descemet Stripping Automated Endothelial Keratoplasty (UT-DSAEK) versus Descemet Membrane Endothelial Keratoplasty (DMEK)-a systematic review and meta-analysis. Eye (London, England), 37(14), 3026–3032. https://doi.org/10.1038/s41433-023-02467-2
Augustin, V. A., Son, H. S., Yildirim, T. M., Meis, J., Łabuz, G., Auffarth, G. U., & Khoramnia, R. (2023). Refractive outcomes after DMEK: meta-analysis. Journal of cataract and refractive surgery, 49(9), 982–987. https://doi.org/10.1097/j.jcrs.0000000000001212
Sela TC, Moti Iflah, Khitam Muhsen, Alon Zahavi. Descemet membrane endothelial keratoplasty compared with ultrathin Descemet stripping automated endothelial keratoplasty: a meta-analysis. BMJ Open Ophthalmology [Internet]. 2023 Nov 1 [cited 2024 Nov 25];8(1):e001397–7. Available from: https://bmjophth.bmj.com/content/8/1/e001397
Béal, L., Navel, V., Pereira, B., Magnier, F., Watson, S. L., Baker, J. S., Chiambaretta, F., & Dutheil, F. (2022). Efficacy of Thin and Ultrathin Descemet Stripping Automated Endothelial Keratoplasty and Influence of Graft Thickness on Postoperative Outcomes: Systematic Review and Meta-analysis. American journal of ophthalmology, 240, 170–186. https://doi.org/10.1016/j.ajo.2022.03.022
Mohebbi, M., Mehrpour, M., Sanij, A. D., Mohammadi, N., & Mirghorbani, M. (2022). Pediatric endothelial keratoplasty: a systematic review and individual participant data meta-analysis. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie, 260(4), 1069–1082. https://doi.org/10.1007/s00417-021-05459-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Daria Ziemińska, Karina Motolko, Rafał Burczyk, Konrad Duszyński, Elżbieta Tokarczyk
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 61
Number of citations: 0