Emerging Biomarkers in Atherosclerosis: Advancing Early Detection and Risk Stratification
DOI:
https://doi.org/10.12775/QS.2024.36.56404Keywords
atherosclerosis, biomarkers, lipoproteins, cardiovascular diseaseAbstract
Introduction:
Atherosclerosis is a complex, multifactorial disease influenced by both genetic and environmental factors, including obesity, cigarette smoking, excessive alcohol consumption, and certain chronic conditions such as hypertension and diabetes mellitus type 2. The disease progresses gradually, and often remains unnoticed for years until serious health complications such as coronary artery disease (CAD), peripheral artery disease (PAD) or cerebrovascular disease arise.
Nowadays, the diagnosis of atherosclerosis relies on the identification of specific biological markers, enabling early detection and assessment of disease progression. The most common markers used in clinical practice include low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TGs), and lipoprotein(a) (Lpa). However, considering that atherosclerosis is one of the leading causes of mortality worldwide and its etiology still remains insufficiently elucidated, there is a pressing need for new, more specific biomarkers for its earlier detection.
Aim of the study:
The aim of this study is to summarize the knowledge concerning new potential biomarkers for the early detection of atherosclerosis through analyzing the biological processes associated with the initiation and progression of the disease, such as inflammation, oxidative stress, and endothelial dysfunction, to better understand its pathophysiology.
Materials and methods:
A systematic review of scientific and medical literature from the PubMed and Google Scholar databases was conducted.
Results:
The analysis of available studies indicates that there are numerous potential biomarkers that might be used for the early diagnosis of atherosclerosis, such as molecules associated with inflammation, lipid oxidation, or endothelial damage. However, further research is needed to establish their full clinical utility.
References
Herrington, W.; Lacey, B.; Sherliker, P.; Armitage, J.; Lewington, S. Epidemiology of Atherosclerosis and the Potential to Reduce the Global Burden of Atherothrombotic Disease. Circ. Res. 2016, 118, 535–546.
Orekhov A.N., Ivanova E.A. Introduction of the special issue “Atherosclerosis and Related Diseases” Vessel Plus. 2017;1:163–165. doi: 10.20517/2574-1209.2017.33.
Basiak M, Hachula M, Kosowski M, Machnik G, Maliglowka M, Dziubinska-Basiak M, Krysiak R, Okopien B. The Effect of PCSK9 Inhibition on the Stabilization of Atherosclerotic Plaque Determined by Biochemical and Diagnostic Imaging Methods. Molecules. 2023 Aug 7;28(15):5928. doi: 10.3390/molecules28155928. PMID: 37570897; PMCID: PMC10421011.
Alipov V.I., Sukhorukov V.N., Karagodin V.P., Grechko A.V., Orekhov A.N. Chemical composition of circulating native and desialylated low density lipoprotein: What is the difference? Vessel Plus. 2017;1:107–115. doi: 10.20517/2574-1209.2017.20.
Orekhov A.N. Modified lipoproteins as biomarkers of atherosclerosis. Front. Biosci. 2018;23:1422–1444. doi: 10.2741/4653
Jebari-Benslaiman S, Galicia-García U, Larrea-Sebal A, Olaetxea JR, Alloza I, Vandenbroeck K, Benito-Vicente A, Martín C. Pathophysiology of Atherosclerosis. Int J Mol Sci. 2022 Mar 20;23(6):3346. doi: 10.3390/ijms23063346. PMID: 35328769; PMCID: PMC8954705.
Libby, P.; Ridker, P.M.; Hansson, G.K. Inflammation in atherosclerosis: From pathophysiology to practice. J. Am. Coll. Cardiol. 2009, 54, 2129–2138
Libby, P. et al. Inflammation, immunity, and infection in atherothrombosis: JACC Review Topic of the Week. J Am Coll Cardiol. 72, 2071–2081 (2018).
Libby, P., Nahrendorf, M. & Swirski, F. K. Leukocytes link local and systemic inflammation in ischemic cardiovascular disease. J. Am. Coll. Cardiol. 67, 1091–1103 (2016).
Poznyak AV, Bharadwaj D, Prasad G, Grechko AV, Sazonova MA, Orekhov AN. Anti-Inflammatory Therapy for Atherosclerosis: Focusing on Cytokines. Int J Mol Sci. 2021 Jun 30;22(13):7061. doi: 10.3390/ijms22137061. PMID: 34209109; PMCID: PMC8269273.
Wu MD, Atkinson TM, Lindner JR. Platelets and von Willebrand factor in atherogenesis. Blood. 2017 Mar 16;129(11):1415-1419. doi: 10.1182/blood-2016-07-692673. Epub 2017 Feb 7. PMID: 28174163; PMCID: PMC5356449.
Gawaz M, Langer H, May AE. Platelets in inflammation and atherogenesis. J Clin Invest. 2005 Dec;115(12):3378-84. doi: 10.1172/JCI27196. PMID: 16322783; PMCID: PMC1297269.
Asada, Yujiro, et al. "Pathophysiology of atherothrombosis: Mechanisms of thrombus formation on disrupted atherosclerotic plaques." Pathology International 70.6 (2020): 309-322.
Forrester S.J., Booz G.W., Sigmund C.D., Coffman T.M., Kawai T., Rizzo V., Scalia R., Eguchi S. Angiotensin II signal transduction: An update on mechanisms of physiology and pathophysiology. Physiol. Rev. 2018;98:1627–1738. doi: 10.1152/physrev.00038.2017.
Pacurari M., Kafoury R., Tchounwou P.B., Ndebele K. The renin-angiotensin-aldosterone system in vascular inflammation and remodeling. Int. J. Inflamm. 2014;2014:689360. doi: 10.1155/2014/689360.
Schmieder RE, Hilgers KF, Schlaich MP, Schmidt BM. Renin-angiotensin system and cardiovascular risk. Lancet. 2007 Apr 07;369(9568):1208-19.
Jigoranu RA, Roca M, Costache AD, Mitu O, Oancea AF, Miftode RS, Haba MȘC, Botnariu EG, Maștaleru A, Gavril RS, Trandabat BA, Chirica SI, Haba RM, Leon MM, Costache II, Mitu F. Novel Biomarkers for Atherosclerotic Disease: Advances in Cardiovascular Risk Assessment. Life (Basel). 2023 Jul 27;13(8):1639. doi: 10.3390/life13081639. PMID: 37629496; PMCID: PMC10455542.
Adam CA, Șalaru DL, Prisacariu C, Marcu DTM, Sascău RA, Stătescu C. Novel Biomarkers of Atherosclerotic Vascular Disease-Latest Insights in the Research Field. Int J Mol Sci. 2022 Apr 30;23(9):4998. doi: 10.3390/ijms23094998. PMID: 35563387; PMCID: PMC9103799
Wang J, Tan GJ, Han LN, et al. Novel biomarkers for cardiovascular risk prediction. J Geriatr Cardiol. 2017; 14(2): 135–150, doi: 10.11909/j. issn.1671-5411.2017.02.008, indexed in Pubmed: 28491088.
Linton MF, Yancey PG, Davies SS, Jerome WG, Linton EF, Song WL, Doran AC, Vickers KC. The Role of Lipids and Lipoproteins in Atherosclerosis. 2019 Jan 3. In: Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, de Herder WW, Dhatariya K, Dungan K, Hofland J, Kalra S, Kaltsas G, Kapoor N, Koch C, Kopp P, Korbonits M, Kovacs CS, Kuohung W, Laferrère B, Levy M, McGee EA, McLachlan R, New M, Purnell J, Sahay R, Shah AS, Singer F, Sperling MA, Stratakis CA, Trence DL, Wilson DP, editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000–. PMID: 26844337.
Linton MF, Yancey PG, Tao H, Davies SS. HDL Function and Atherosclerosis: Reactive Dicarbonyls as Promising Targets of Therapy. Circ Res. 2023 May 26;132(11):1521-1545. doi: 10.1161/CIRCRESAHA.123.321563. Epub 2023 May 25. PMID: 37228232; PMCID: PMC10213997.
Ivanova EA, Myasoedova VA, Melnichenko AA, Grechko AV, Orekhov AN. Small Dense Low-Density Lipoprotein as Biomarker for Atherosclerotic Diseases. Oxid Med Cell Longev. 2017;2017:1273042. doi: 10.1155/2017/1273042. Epub 2017 May 7. PMID: 28572872; PMCID: PMC5441126.
Nikolic D., Katsiki N., Montalto G., Isenovic E. R., Mikhailidis D. P., Rizzo M. Lipoprotein subfractions in metabolic syndrome and obesity: clinical significance and therapeutic approaches. Nutrients. 2013;5(3):928–948. doi: 10.3390/nu5030928.
Goldberg R., Temprosa M., Otvos J., et al. Lifestyle and metformin treatment favorably influence lipoprotein subfraction distribution in the Diabetes Prevention Program. The Journal of Clinical Endocrinology and Metabolism. 2013;98(10):3989–3998. doi: 10.1210/jc.2013-1452.
Brunzell J. D., Zambon A., Deeb S. S. The effect of hepatic lipase on coronary artery disease in humans is influenced by the underlying lipoprotein phenotype. Biochimica et Biophysica Acta. 2012;1821(3):365–372. doi: 10.1016/j.bbalip.2011.09.008
National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002;106:3143–3421. doi: 10.1161/circ.106.25.3143.
Riches K, Porter KE. Lipoprotein(a): cellular effects and molecular mechanisms. Cholesterol. 2012;2012:923289. doi: 10.1155/2012/923289
Maranhão RC, Carvalho PO, Strunz CC, Pileggi F. Lipoprotein (a): structure, pathophysiology and clinical implications. Arq Bras Cardiol. 2014 Jul;103(1):76-84. doi: 10.5935/abc.20140101. PMID: 25120086; PMCID: PMC4126764.
Maligłówka M, Kosowski M, Hachuła M, Cyrnek M, Bułdak Ł, Basiak M, Bołdys A, Machnik G, Bułdak RJ, Okopień B. Insight into the Evolving Role of PCSK9. Metabolites. 2022 Mar 17;12(3):256. doi: 10.3390/metabo12030256. PMID: 35323699; PMCID: PMC8951079.
Hansson GK, Robertson AK, Söderberg-Nauclér C. Inflammation and atherosclerosis. Annu Rev Pathol. 2006;1:297-329. doi: 10.1146/annurev.pathol.1.110304.100100. PMID: 18039117.
Njajou OT, Kanaya AM, Holvoet P, Connelly S, Strotmeyer ES, Harris TB, Cummings SR, Hsueh WC; Health ABC Study. Association between oxidized LDL, obesity and type 2 diabetes in a population-based cohort, the Health, Aging and Body Composition Study. Diabetes Metab Res Rev. 2009 Nov;25(8):733-9. doi: 10.1002/dmrr.1011. PMID: 19780064; PMCID: PMC3269343.
van den Berg VJ, Vroegindewey MM, Kardys I, Boersma E, Haskard D, Hartley A, Khamis R. Anti-Oxidized LDL Antibodies and Coronary Artery Disease: A Systematic Review. Antioxidants (Basel). 2019 Oct 15;8(10):484. doi: 10.3390/antiox8100484. PMID: 31618991; PMCID: PMC6826549.
Ndrepepa G, Braun S, von Beckerath N, Mehilli J, Gorchakova O, Vogt W, Schömig A, Kastrati A. Oxidized low density lipoproteins, statin therapy and severity of coronary artery disease. Clin Chim Acta. 2005 Oct;360(1-2):178-86. doi: 10.1016/j.cccn.2005.04.032. PMID: 15993392.
US Food and Drug Administration. Guidance for industry and FDA staff: criteria for assessment of C-reactive protein (CRP), high sensitivity C-reactive protein (hsCRP), and cardiac C-reactive protein (cCRP) assays. http://www.fda.gov/cdrh/oivd/guidance/1246.html.
Braig D., Nero T.L., Koch H.-G., Kaiser B., Wang X., Thiele J.R., Morton C.J., Zeller J., Kiefer J., Potempa L.A., et al. Transitional changes in the CRP structure lead to the exposure of pro-inflammatory binding sites. Nat. Commun. 2017;8:14188. doi: 10.1038/ncomms14188.
Shrivastava A, Singh H, Raizada A, et al. C-reactive protein, inflammation and coronary heart disease. The Egyptian Heart Journal. 2015; 67(2): 89–97.
Pradhan A.D., Manson J.E., Rossouw J.E., Siscovick D.S., Mouton C.P., Rifai N., Wallace R.B., Jackson R.D., Pettinger M.B., Ridke P.M. Inflammatory biomarkers, hormone replacement therapy, and incident coronary heart disease: Prospective analysis from the Women’s Health Initiative observational study. JAMA. 2002;288:980–987. doi: 10.1001/jama.288.8.980
Pai J.K., Pischon T., Ma J., Manson J.E., Hankinson S.E., Joshipura K., Curhan G.C., Rifai N., Cannuscio C.C., Stampfer M.J., et al. Inflammatory markers and the risk of coronary heart disease in men and women. N. Engl. J. Med. 2004;351:2599–2610. doi: 10.1056/NEJMoa040967
Muiesan ML, Agabiti-Rosei C, Paini A, Salvetti M. Uric Acid and Cardiovascular Disease: An Update. Eur Cardiol. 2016 Aug;11(1):54-59. doi: 10.15420/ecr.2016:4:2. PMID: 30310447; PMCID: PMC6159425.
Braig D., Nero T.L., Koch H.-G., Kaiser B., Wang X., Thiele J.R., Morton C.J., Zeller J., Kiefer J., Potempa L.A., et al. Transitional changes in the CRP structure lead to the exposure of pro-inflammatory binding sites. Nat. Commun. 2017;8:14188. doi: 10.1038/ncomms14188.
Loppnow H, Libby P. Adult human vascular endothelial cells express the IL6 gene differentially in response to LPS or IL1. Cell Immunol. 1989;122:493–503. doi: 10.1016/0008-8749(89)90095-6
Ridker PM, Rifai N, Stampfer MJ, et al. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation. 2000; 101(15): 1767–1772.
Ley K, Huo Y. VCAM-1 is critical in atherosclerosis. J Clin Invest. 2001; 107(10): 1209–1210.
Reiss AB, Siegart MN, DeLeon J. Interleukin-6 in atherosclerosis: atherogenic or atheroprotective? Clinical Lipidology. 2017; 12(1): 14–23.
Jia X, Buckley L, Sun C, Al Rifai M, Yu B, Nambi V, Virani SS, Selvin E, Matsushita K, Hoogeveen RC, Coresh J, Shah AM, Ballantyne CM. Association of interleukin-6 and interleukin-18 with cardiovascular disease in older adults: Atherosclerosis Risk in Communities study. Eur J Prev Cardiol. 2023 Nov 9;30(16):1731-1740. doi: 10.1093/eurjpc/zwad197. PMID: 37306504; PMCID: PMC10637765.
Liu W.-Q., Zhang Y.-Z., Wu Y., Zhang J.-J., Li T.-B., Jiang T., Xiong X.-M., Luo X.-J., Ma Q.-L., Peng J. Myeloperoxidase-derived hypochlorous acid promotes ox-LDL induced senescence of endothelial cells through a mechanism involving β-catenin signaling in hyperlipidemia. Biochem. Biophys. Res. Commun. 2015;467:859–865. doi: 10.1016/j.bbrc.2015.10.053.
Klebanoff S.J. Myeloperoxidase: Friend and foe. J. Leukoc. Biol. 2005;77:598–625. doi: 10.1189/jlb.1204697.
Liu SC, Yi TC, Weng HY, et al. [Prognostic value of myeloperoxidase concentration in patients with acute coronary syndrome]. Zhonghua Xin Xue Guan Bing Za Zhi. 2018; 46(4): 284–291.
Rochette L, Dogon G, Zeller M, Cottin Y, Vergely C. GDF15 and Cardiac Cells: Current Concepts and New Insights. Int J Mol Sci. 2021 Aug 18;22(16):8889. doi: 10.3390/ijms22168889. PMID: 34445593; PMCID: PMC8396208.
Wiklund FE, Bennet AM, Magnusson PK, et al. Macrophage inhibitory cytokine-1 (mic-1/gdf15): a new marker of all-cause mortality. Aging Cell. 2010;9:1057–1064. doi: 10.1111/j.1474-9726.2010.00629.x.
Cotter G, Voors AA, Prescott MF, et al. Growth differentiation factor 15 (gdf-15) in patients admitted for acute heart failure: results from the relax-ahf study. Eur J Heart Fail. 2015;17:1133–1143. doi: 10.1002/ejhf.331.
Wollert KC, Kempf T, Wallentin L, et al. Growth differentiation factor-15: a new biomarker in cardiovascular disease. Herz. 2009; 34(8): 594–599.
Weisel JW, Litvinov RI. Fibrin Formation, Structure and Properties. Subcell Biochem. 2017;82:405-456. doi: 10.1007/978-3-319-49674-0_13. PMID: 28101869; PMCID: PMC5536120.
Becatti M, Marcucci R, Bruschi G, et al. Oxidative modification of fibrinogen is associated with altered function and structure in the subacute phase of myocardial infarction. Arterioscler Thromb Vasc Biol. 2014;34:1355–1361. doi: 10.1161/ATVBAHA.114.303785.
Fibrinogen Studies Collaboration*. Plasma Fibrinogen Level and the Risk of Major Cardiovascular Diseases and Nonvascular Mortality: An Individual Participant Meta-analysis. JAMA. 2005;294(14):1799–1809. doi:10.1001/jama.294.14.1799
Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol. 2018 Apr;141(4):1202-1207. doi: 10.1016/j.jaci.2017.08.034. Epub 2017 Oct 23. PMID: 29074454; PMCID: PMC5889965.
Boettger T, Braun T. A new level of complexity: the role of microRNAs in cardiovascular development. Circ Res. 2012 Mar 30;110(7):1000-13. doi: 10.1161/CIRCRESAHA.111.247742. PMID: 22461364.
Lopez-Pedrera C, Barbarroja N, Patiño-Trives AM, Luque-Tévar M, Torres-Granados C, Aguirre-Zamorano MA, Collantes-Estevez E, Pérez-Sánchez C. Role of microRNAs in the Development of Cardiovascular Disease in Systemic Autoimmune Disorders. Int J Mol Sci. 2020 Mar 16;21(6):2012. doi: 10.3390/ijms21062012. PMID: 32188016; PMCID: PMC7139533.
Fish J.E., Santoro M.M., Morton S.U., Yu S., Yeh R.-F., Wythe J.D., Ivey K.N., Bruneau B.G., Stainier D.Y.R., Srivastava D. miR-126 Regulates Angiogenic Signaling and Vascular Integrity. Dev. Cell. 2008;15:272–284. doi: 10.1016/j.devcel.2008.07.008.
Sharma A.R., Sharma G., Bhattacharya M., Lee S.-S., Chakraborty C. Circulating miRNA in Atherosclerosis: A Clinical Biomarker and Early Diagnostic Tool. Curr. Mol. Med. 2022;22:250–262. doi: 10.2174/1566524021666210315124438.
Lu Y., Thavarajah T., Gu W., Cai J., Xu Q. Impact of miRNA in Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2018;38:E159–E170. doi: 10.1161/ATVBAHA.118.310227.
Boon RA, Hergenreider E, Dimmeler S. Atheroprotective mechanisms of shear stress-regulated microRNAs. Thromb Haemost. (2012) 108:616–20. 10.1160/TH12-07-0491
Hergenreider E, Heydt S, Tréguer K, Boettger T, Horrevoets AJG, Zeiher AM, et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol. (2012) 14:249–56. 10.1038/ncb2441
Teixeira AR, Ferreira VV, Pereira-da-Silva T, Ferreira RC. The role of miRNAs in the diagnosis of stable atherosclerosis of different arterial territories: A critical review. Front Cardiovasc Med. 2022 Nov 25;9:1040971. doi: 10.3389/fcvm.2022.1040971. PMID: 36505351; PMCID: PMC9733725.
Chen T, Huang Z, Wang L, Wang Y, Wu F, Meng S, et al. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovasc Res. (2009) 83:131–9. 10.1093/cvr/cvp121
Della Corte V, Todaro F, Cataldi M, Tuttolomondo A. Atherosclerosis and Its Related Laboratory Biomarkers. Int J Mol Sci. 2023 Oct 24;24(21):15546. doi: 10.3390/ijms242115546. PMID: 37958528; PMCID: PMC10649778.
Burke JE, Dennis EA. Phospholipase a2 biochemistry. Cardiovasc Drugs Ther. 2009;23:49–59. doi: 10.1007/s10557-008-6132-9.
Packard CJ, O'Reilly DS, Caslake MJ, et al. Lipoprotein-associated phospholipase a2 as an independent predictor of coronary heart disease. West of Scotland coronary prevention study group. N Engl J Med. 2000;343:1148–1155. doi: 10.1056/NEJM200010193431603.
STABILITY Investigators; White HD, Held C, Stewart R, Tarka E, Brown R, Davies RY, Budaj A, Harrington RA, Steg PG, Ardissino D, Armstrong PW, Avezum A, Aylward PE, Bryce A, Chen H, Chen MF, Corbalan R, Dalby AJ, Danchin N, De Winter RJ, Denchev S, Diaz R, Elisaf M, Flather MD, Goudev AR, Granger CB, Grinfeld L, Hochman JS, Husted S, Kim HS, Koenig W, Linhart A, Lonn E, López-Sendón J, Manolis AJ, Mohler ER 3rd, Nicolau JC, Pais P, Parkhomenko A, Pedersen TR, Pella D, Ramos-Corrales MA, Ruda M, Sereg M, Siddique S, Sinnaeve P, Smith P, Sritara P, Swart HP, Sy RG, Teramoto T, Tse HF, Watson D, Weaver WD, Weiss R, Viigimaa M, Vinereanu D, Zhu J, Cannon CP, Wallentin L. Darapladib for preventing ischemic events in stable coronary heart disease. N Engl J Med. 2014 May 1;370(18):1702-11. doi: 10.1056/NEJMoa1315878. Epub 2014 Mar 30. PMID: 24678955.
Pereira-da-Silva T, Ferreira V, Castelo A, Caldeira D, Napoleão P, Pinheiro T, Ferreira RC, Carmo MM. Soluble CD40 ligand expression in stable atherosclerosis: A systematic review and meta-analysis. Atherosclerosis. 2021 Feb;319:86-100. doi: 10.1016/j.atherosclerosis.2020.12.011. Epub 2020 Dec 15. PMID: 33494009.
Nicholls SJ, Kastelein JJ, Schwartz GG, et al. Varespladib and cardiovascular events in patients with an acute coronary syndrome: the VISTA-16 randomized clinical trial. JAMA. 2014;311:252–262. doi: 10.1001/jama.2013.282836.
Anand SX, Viles-Gonzalez JF, Badimon JJ, et al. Membrane-associated CD40L and sCD40L in atherothrombotic disease. Thromb Haemost. 2003;90:377–384. doi: 10.1160/TH03-05-0268.
Li J, Wang Y, Lin J, et al. Soluble cd40l is a useful marker to predict future strokes in patients with minor stroke and transient ischemic attack. Stroke. 2015;46:1990–1992. doi: 10.1161/STROKEAHA.115.008685.
Plaikner M, Peer A, Falkensammer G, et al. Lack of association of soluble CD40 ligand with the presence of acute myocardial infarction or ischemic stroke in the emergency department. Clin Chem. 2009;55:175–178. doi: 10.1373/clinchem.2008.114231.
Jalleh R, Torpy DJ. The Emerging Role of Copeptin. Clin Biochem Rev. 2021 Feb;42(1):17-25. doi: 10.33176/AACB-20-00001. PMID: 35722630; PMCID: PMC9205176.
Schill F, Persson M, Engström G, Melander O, Enhörning S. Copeptin as a marker of atherosclerosis and arteriosclerosis. Atherosclerosis. 2021 Dec;338:64-68. doi: 10.1016/j.atherosclerosis.2021.10.012. Epub 2021 Nov 1. PMID: 34785062; PMCID: PMC7612343.
Tasevska I, Enhorning S, Persson M, et al. Copeptin predicts coronary artery disease cardiovascular and total mortality. Heart. 2016;102:127–132. doi: 10.1136/heartjnl-2015-308183.
Haaf P, Twerenbold R, Reichlin T, Faoro J, Reiter M, Meune C, Steuer S, Bassetti S, Ziller R, Balmelli C, Campodarve I, Zellweger C, Kilchenmann A, Irfan A, Papassotiriou J, Drexler B, Mueller C. Mid-regional pro-adrenomedullin in the early evaluation of acute chest pain patients. Int J Cardiol. 2013 Sep 30;168(2):1048-55. doi: 10.1016/j.ijcard.2012.10.025. Epub 2012 Nov 27. PMID: 23199555.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Aleksandra Sojka, Julia Sosin, Anna Pilarz, Julia Stachowiak, Maria Zwierzchowska, Dariusz Salamon, Wojciech Domagała
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 106
Number of citations: 0