The Influence of the Gut Microbiome on the Pathogenesis of Asthma: A Review of Current Research and Therapeutic Options
DOI:
https://doi.org/10.12775/QS.2024.35.56359Keywords
asthma, gut microbiota, gut-lung axis, probiotics, prebiotics, fiber diet, personalised medicine, fecal microbiota transplantationAbstract
Introduction and purpose:
Asthma is a chronic inflammatory disease of the airways. Its pathogenesis may be linked to the gut microbiome, which plays a key role in the immune system. This review analyzes current evidence regarding the influence of the gut microbiome on asthma development, particularly in the context of the gut-lung axis. The aim of this paper is to assess the current therapeutic possibilities for asthma based on the modulation of the gut microbiota.
Materials and methods:
The literature review includes articles from scientific databases (PubMed), selected for their citation impact and relevance to the topic under analysis.
Results:
The gut microbiota affects immune balance by producing short-chain fatty acids (SCFAs) and other metabolites that modulate the body’s inflammatory response. Gut dysbiosis may contribute to the development of asthma. The use of probiotics, prebiotics, and a fiber-rich diet has shown beneficial effects in reducing inflammation in asthma. Fecal microbiota transplantation (FMT) may represent a future therapeutic approach, though further clinical research is required.
Conclusion:
Modulation of the gut microbiota is a promising support in asthma therapy. A personalized treatment approach based on the patient's microbiota profile could potentially improve disease control and reduce the reliance on steroids in the future.
References
Reddel HK, Bacharier LB, Bateman ED, et al. Global Initiative for Asthma Strategy 2021: Executive Summary and Rationale for Key Changes. Am J Respir Crit Care Med. 2022;205(1):17-35. doi:10.1164/rccm.202109-2205PP
Hammad H, Lambrecht BN. The basic immunology of asthma [published correction appears in Cell. 2021 Apr 29;184(9):2521-2522. doi: 10.1016/j.cell.2021.04.019]. Cell. 2021;184(6):1469-1485. doi:10.1016/j.cell.2021.02.016
Barcik W, Boutin RCT, Sokolowska M, Finlay BB. The Role of Lung and Gut Microbiota in the Pathology of Asthma. Immunity. 2020;52(2):241-255. doi:10.1016/j.immuni.2020.01.007
Gautam Y, Afanador Y, Ghandikota S, Mersha TB. Comprehensive functional annotation of susceptibility variants associated with asthma [published correction appears in Hum Genet. 2020 Aug;139(8):1055. doi: 10.1007/s00439-020-02173-z]. Hum Genet. 2020;139(8):1037-1053. doi:10.1007/s00439-020-02151-5
Ntontsi P, Photiades A, Zervas E, Xanthou G, Samitas K. Genetics and Epigenetics in Asthma. Int J Mol Sci. 2021;22(5):2412. Published 2021 Feb 27. doi:10.3390/ijms22052412
Miller RL, Grayson MH, Strothman K. Advances in asthma: New understandings of asthma's natural history, risk factors, underlying mechanisms, and clinical management. J Allergy Clin Immunol. 2021;148(6):1430-1441. doi:10.1016/j.jaci.2021.10.001
Kuziel GA, Rakoff-Nahoum S. The gut microbiome. Curr Biol. 2022;32(6):R257-R264. doi:10.1016/j.cub.2022.02.023
Aldars-García L, Chaparro M, Gisbert JP. Systematic Review: The Gut Microbiome and Its Potential Clinical Application in Inflammatory Bowel Disease. Microorganisms. 2021;9(5):977. Published 2021 Apr 30. doi:10.3390/microorganisms9050977
Li R, Guo Q, Zhao J, et al. Assessing causal relationships between gut microbiota and asthma: evidence from two sample Mendelian randomization analysis. Front Immunol. 2023;14:1148684. Published 2023 Jul 19. doi:10.3389/fimmu.2023.1148684
McDonnell L, Gilkes A, Ashworth M, et al. Association between antibiotics and gut microbiome dysbiosis in children: systematic review and meta-analysis. Gut Microbes. 2021;13(1):1-18. doi:10.1080/19490976.2020.1870402
Strömberg Celind F, Wennergren G, Vasileiadou S, Alm B, Goksör E. Antibiotics in the first week of life were associated with atopic asthma at 12 years of age. Acta Paediatr. 2018;107(10):1798-1804. doi:10.1111/apa.14332
Galeone C, Scelfo C, Bertolini F, et al. Precision Medicine in Targeted Therapies for Severe Asthma: Is There Any Place for "Omics" Technology?. Biomed Res Int. 2018;2018:4617565. Published 2018 Jun 11. doi:10.1155/2018/4617565
Peters MC, Mekonnen ZK, Yuan S, Bhakta NR, Woodruff PG, Fahy JV. Measures of gene expression in sputum cells can identify TH2-high and TH2-low subtypes of asthma. J Allergy Clin Immunol. 2014;133(2):388-394. doi:10.1016/j.jaci.2013.07.036
Habib N, Pasha MA, Tang DD. Current Understanding of Asthma Pathogenesis and Biomarkers. Cells. 2022;11(17):2764. Published 2022 Sep 5. doi:10.3390/cells11172764
Wang J, Zhu N, Su X, Gao Y, Yang R. Gut-Microbiota-Derived Metabolites Maintain Gut and Systemic Immune Homeostasis. Cells. 2023;12(5):793. Published 2023 Mar 2. doi:10.3390/cells12050793
Narayana JK, Aliberti S, Mac Aogáin M, et al. Microbial Dysregulation of the Gut-Lung Axis in Bronchiectasis. Am J Respir Crit Care Med. 2023;207(7):908-920. doi:10.1164/rccm.202205-0893OC
Jiang Y, Nguyen TV, Jin J, Yu ZN, Song CH, Chai OH. Bergapten ameliorates combined allergic rhinitis and asthma syndrome after PM2.5 exposure by balancing Treg/Th17 expression and suppressing STAT3 and MAPK activation in a mouse model. Biomed Pharmacother. 2023;164:114959. doi:10.1016/j.biopha.2023.114959
Aslam R, Herrles L, Aoun R, Pioskowik A, Pietrzyk A. Link between gut microbiota dysbiosis and childhood asthma: Insights from a systematic review. J Allergy Clin Immunol Glob. 2024;3(3):100289. Published 2024 Jun 12. doi:10.1016/j.jacig.2024.100289
Chen X, Yong SB, Yii CY, Feng B, Hsieh KS, Li Q. Intestinal microbiota and probiotic intervention in children with bronchial asthma. Heliyon. 2024;10(15):e34916. Published 2024 Jul 20. doi:10.1016/j.heliyon.2024.e34916
Fu X, Ou Z, Zhang M, et al. Indoor bacterial, fungal and viral species and functional genes in urban and rural schools in Shanxi Province, China-association with asthma, rhinitis and rhinoconjunctivitis in high school students. Microbiome. 2021;9(1):138. Published 2021 Jun 12. doi:10.1186/s40168-021-01091-0
Alcazar CG, Paes VM, Shao Y, et al. The association between early-life gut microbiota and childhood respiratory diseases: a systematic review. Lancet Microbe. 2022;3(11):e867-e880. doi:10.1016/S2666-5247(22)00184-7
Henrick BM, Rodriguez L, Lakshmikanth T, et al. Bifidobacteria-mediated immune system imprinting early in life. Cell. 2021;184(15):3884-3898.e11. doi:10.1016/j.cell.2021.05.030
Xie Q, Yuan J, Wang Y. Treating asthma patients with probiotics: a systematic review and meta-analysis. Tratamiento de pacientes asmáticos con probióticos: revisión sistemática y metaanálisis. Nutr Hosp. 2023;40(4):829-838. doi:10.20960/nh.04360
Loewenthal L, Menzies-Gow A. FeNO in Asthma. Semin Respir Crit Care Med. 2022;43(5):635-645. doi:10.1055/s-0042-1743290
Kim SK, Guevarra RB, Kim YT, et al. Role of Probiotics in Human Gut Microbiome-Associated Diseases. J Microbiol Biotechnol. 2019;29(9):1335-1340. doi:10.4014/jmb.1906.06064
Li L, Fang Z, Liu X, et al. Lactobacillus reuteri attenuated allergic inflammation induced by HDM in the mouse and modulated gut microbes. PLoS One. 2020;15(4):e0231865. Published 2020 Apr 21. doi:10.1371/journal.pone.0231865
Li L, Fang Z, Lee YK, et al. Efficacy and Safety of Lactobacillus reuteri CCFM1040 in Allergic Rhinitis and Asthma: A Randomized, Placebo-Controlled Trial. Front Nutr. 2022;9:862934. Published 2022 Apr 7. doi:10.3389/fnut.2022.862934
Resta-Lenert S, Barrett KE. Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC). Gut. 2003;52(7):988-997. doi:10.1136/gut.52.7.988
Voo PY, Wu CT, Sun HL, Ko JL, Lue KH. Effect of combination treatment with Lactobacillus rhamnosus and corticosteroid in reducing airway inflammation in a mouse asthma model. J Microbiol Immunol Infect. 2022;55(4):766-776. doi:10.1016/j.jmii.2022.03.006
Dai DLY, Petersen C, Hoskinson C, et al. Breastfeeding enrichment of B. longum subsp. infantis mitigates the effect of antibiotics on the microbiota and childhood asthma risk. Med. 2023;4(2):92-112.e5. doi:10.1016/j.medj.2022.12.002
Yadav MK, Kumari I, Singh B, Sharma KK, Tiwari SK. Probiotics, prebiotics and synbiotics: Safe options for next-generation therapeutics. Appl Microbiol Biotechnol. 2022;106(2):505-521. doi:10.1007/s00253-021-11646-8
Guarino MPL, Altomare A, Emerenziani S, et al. Mechanisms of Action of Prebiotics and Their Effects on Gastro-Intestinal Disorders in Adults. Nutrients. 2020;12(4):1037. Published 2020 Apr 9. doi:10.3390/nu12041037
Tzounis X, Rodriguez-Mateos A, Vulevic J, Gibson GR, Kwik-Uribe C, Spencer JP. Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am J Clin Nutr. 2011;93(1):62-72. doi:10.3945/ajcn.110.000075
Visser E, Ten Brinke A, Sizoo D, et al. Effect of dietary interventions on markers of type 2 inflammation in asthma: A systematic review. Respir Med. 2024;221:107504. doi:10.1016/j.rmed.2023.107504
Pérez-Jiménez J. Dietary fiber: Still alive. Food Chem. 2024;439:138076. doi:10.1016/j.foodchem.2023.138076
Lin S, Zhu N, Zhang S. Associations of dietary fiber intake with chronic inflammatory airway diseases and mortality in adults: a population-based study. Front Public Health. 2023;11:1167167. Published 2023 May 26. doi:10.3389/fpubh.2023.1167167
Andrianasolo RM, Hercberg S, Kesse-Guyot E, et al. Association between dietary fibre intake and asthma (symptoms and control): results from the French national e-cohort NutriNet-Santé. Br J Nutr. 2019;122(9):1040-1051. doi:10.1017/S0007114519001843
van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368(5):407-415. doi:10.1056/NEJMoa1205037
Lee CH, Steiner T, Petrof EO, et al. Frozen vs Fresh Fecal Microbiota Transplantation and Clinical Resolution of Diarrhea in Patients With Recurrent Clostridium difficile Infection: A Randomized Clinical Trial. JAMA. 2016;315(2):142-149. doi:10.1001/jama.2015.18098
Cooper PJ, Chis Ster I, Chico ME, et al. Impact of early life geohelminths on wheeze, asthma and atopy in Ecuadorian children at 8 years. Allergy. 2021;76(9):2765-2775. doi:10.1111/all.14821
Abdelaziz MH, Ji X, Wan J, Abouelnazar FA, Abdelwahab SF, Xu H. Mycobacterium-Induced Th1, Helminths-Induced Th2 Cells and the Potential Vaccine Candidates for Allergic Asthma: Imitation of Natural Infection. Front Immunol. 2021;12:696734. Published 2021 Aug 3. doi:10.3389/fimmu.2021.696734
Goetz LH, Schork NJ. Personalized medicine: motivation, challenges, and progress. Fertil Steril. 2018;109(6):952-963. doi:10.1016/j.fertnstert.2018.05.006
Katsoulis K, Ismailos G, Kipourou M, Kostikas K. Microbiota and asthma: Clinical implications. Respir Med. 2019;146:28-35. doi:10.1016/j.rmed.2018.11.016
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Dominik Maciej Feret, Daniel Zapasek, Michał Szczepański, Marcin Kuliga, Mateusz Bajak, Julia Słowik, Julia Inglot, Jadwiga Inglot, Maciej Mamczur, Damian Sowa
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 71
Number of citations: 0