Meldonium – A High Potential Drug. Literature Review
DOI:
https://doi.org/10.12775/QS.2024.35.56339Keywords
meldonium, Mildronate, heart failure, doping, professional athletesAbstract
Introduction and purpose:
Meldonium is a long-established substance. Initially, the substance was only available in the former Soviet Union; now the drug can be obtained, for example, in Poland. Originally, its action was observed in the cardiovascular system as an antianginal drug. Today meldonium is already being used in ischaemic heart disease and chronic heart failure. This review provides exhaustive account of the pharmacological properties and clinical applications of the drug meldonium, with a particular emphasis on its biochemical effects, pharmacokinetics, and potential for performance enhancement in athletes.
Material and methods:
The literature available in PubMed and Google Scholar databases was conducted using the keywords.
Description of the state of knowledge:
Meldonium acts as a γ-butyrobetaine hydroxylase inhibitor, preventing de novo synthesis of carnitine and its absorption at the intestinal level. This leads to inhibition of ß-oxidation and activation of glycolysis, which is recognised as an anti-ischaemic and cardioprotective mechanism. The results of studies indicate the potential of this drug for the treatment of neurological and ischemic conditions. Meldonium is likely to improve performance in sport, which led to the compound's inclusion on the World Anti-Doping Association's list of banned substances.
Conclusions:
Despite the high potential shown in studies to date, new, more thorough studies are needed to confirm the effectiveness of meldonium.
References
Schobersberger W, Dünnwald T, Gmeiner G, Blank C. Story behind meldonium-from pharmacology to performance enhancement: a narrative review. Br J Sports Med. 2017;51(1):22-25. doi:10.1136/bjsports-2016-096357
Görgens C, Guddat S, Dib J, Geyer H, Schänzer W, Thevis M. Mildronate (Meldonium) in professional sports - monitoring doping control urine samples using hydrophilic interaction liquid chromatography - high resolution/high accuracy mass spectrometry. Drug Test Anal. 2015;7(11-12):973-979. doi:10.1002/dta.1788
Pușcaș A, Buț MG, Vari CE, et al. Meldonium Supplementation in Professional Athletes: Career Destroyer or Lifesaver?. Cureus. 2024;16(7):e63634. Published 2024 Jul 1. doi:10.7759/cureus.63634
Greenblatt HK, Greenblatt DJ. Meldonium (Mildronate): A Performance-Enhancing Drug?. Clin Pharmacol Drug Dev. 2016;5(3):167-169. doi:10.1002/cpdd.264
Dambrova M, Makrecka-Kuka M, Vilskersts R, Makarova E, Kuka J, Liepinsh E. Pharmacological effects of meldonium: Biochemical mechanisms and biomarkers of cardiometabolic activity. Pharmacol Res. 2016;113(Pt B):771-780. doi:10.1016/j.phrs.2016.01.019
Liepinsh E, Konrade I, Skapare E, et al. Mildronate treatment alters γ-butyrobetaine and l-carnitine concentrations in healthy volunteers. J Pharm Pharmacol. 2011;63(9):1195-1201. doi:10.1111/j.2042-7158.2011.01325.x
Liepinsh E, Vilskersts R, Loca D, et al. Mildronate, an inhibitor of carnitine biosynthesis, induces an increase in gamma-butyrobetaine contents and cardioprotection in isolated rat heart infarction. J Cardiovasc Pharmacol. 2006;48(6):314-319. doi:10.1097/01.fjc.0000250077.07702.23
Liepinsh E, Makarova E, Sevostjanovs E, et al. Carnitine and γ-Butyrobetaine Stimulate Elimination of Meldonium due to Competition for OCTN2-mediated Transport. Basic Clin Pharmacol Toxicol. 2017;120(5):450-456. doi:10.1111/bcpt.12729
Oellgaard J, Winther SA, Hansen TS, Rossing P, von Scholten BJ. Trimethylamine N-oxide (TMAO) as a New Potential Therapeutic Target for Insulin Resistance and Cancer. Curr Pharm Des. 2017;23(25):3699-3712. doi:10.2174/1381612823666170622095324
Porter C, Constantin-Teodosiu D, Constantin D, Leighton B, Poucher SM, Greenhaff PL. Muscle carnitine availability plays a central role in regulating fuel metabolism in the rodent. J Physiol. 2017;595(17):5765-5780. doi:10.1113/JP274415
Skotnicka J, Błaszczak K, Witkowska M, Turek M, Witkowski M, Ślósarz T, Krupa P, Kaczorowski R, Forenc T, Wojciechowska K. Changes in the Treatment and Prevention of Heart Failure Based on the 2023 Focused Update of the 2021 European Society of Cardiology Guidelines. Quality in Sport. 24, (Oct. 2024), 54787. DOI:https://doi.org/10.12775/QS.2024.24.54787
Statsenko ME, Belenkova SV, Sporova OE, Shilina NN. The use of mildronate in combined therapy of postinfarction chronic heart failure in patients with type 2 diabetes mellitus. Klin Med (Mosk). 2007;85(7):39-42.
Dzerve V, Matisone D, Kukulis I, Romanova J, Putane L, Grabauskiene V Skarda I, Berzina D, Strautmanis J. Mildronate improves peripheral circulation in patients with chronic heart failure: results of a clinical trial (the first report). Cardiology. 2005; 11. 56-64.
Sesti C, Simkhovich BZ, Kalvinsh I, Kloner RA. Mildronate, a novel fatty acid oxidation inhibitor and antianginal agent, reduces myocardial infarct size without affecting hemodynamics. J Cardiovasc Pharmacol. 2006;47(3):493-499. doi:10.1097/01.fjc.0000211732.76668.d2
Kuka J, Vilskersts R, Cirule H, et al. The cardioprotective effect of mildronate is diminished after co-treatment with L-carnitine. J Cardiovasc Pharmacol Ther. 2012;17(2):215-222. doi:10.1177/1074248411419502
Dzerve V; MILSS I Study Group. A dose-dependent improvement in exercise tolerance in patients with stable angina treated with mildronate: a clinical trial "MILSS I". Medicina (Kaunas). 2011;47(10):544-551.
Dzērve V, Matisone D, Kukulis I, Mintale I, Lietuvietis E, Krievins DK, Lacis A, Mednis G, Rits J, Gediņš M, Ķīsis K, Aleksandrovics V, Kovalovs, S. Partial inhibition of fatty acid oxydation increases the exercise tolerance of patients with peripheral arterial disease : the Mildronate Study. Seminars in Cardiovascular Medicine, 2011; 17:3 January 2011 e-ISSN 1822-7767
Savic D, Ball V, Holzner L, et al. Hyperpolarized magnetic resonance shows that the anti-ischemic drug meldonium leads to increased flux through pyruvate dehydrogenase in vivo resulting in improved post-ischemic function in the diabetic heart. NMR Biomed. 2021;34(4):e4471. doi:10.1002/nbm.4471
Vilskersts R, Kigitovica D, Korzh S, et al. Protective Effects of Meldonium in Experimental Models of Cardiovascular Complications with a Potential Application in COVID-19. Int J Mol Sci. 2021;23(1):45. Published 2021 Dec 21. doi:10.3390/ijms23010045
Tynterova AM, Belousova YD, Reznik EY. Klinicheskie proyavleniya i metabolicheskaya terapiya astenicheskogo sindroma v ostrom i rannem vosstanovitel'nom periodakh ishemicheskogo insul'ta [Clinical characteristics and metabolic therapy of fatigue in the acute and early recovery periods of ischemic stroke]. Zh Nevrol Psikhiatr Im S S Korsakova. 2023;123(3. Vyp. 2):94-100. doi:10.17116/jnevro202312303294
Yang W, Lei X, Liu F, et al. Meldonium, as a potential neuroprotective agent, promotes neuronal survival by protecting mitochondria in cerebral ischemia-reperfusion injury. J Transl Med. 2024;22(1):771. Published 2024 Aug 15. doi:10.1186/s12967-024-05222-7
Demir D, Kuru Bektaşoğlu P, Koyuncuoğlu T, et al. Neuroprotective effects of mildronate in a rat model of traumatic brain injury. Injury. 2019;50(10):1586-1592. doi:10.1016/j.injury.2019.08.036
Di Cristo F, Finicelli M, Digilio FA, et al. Meldonium improves Huntington's disease mitochondrial dysfunction by restoring peroxisome proliferator-activated receptor γ coactivator 1α expression. J Cell Physiol. 2019;234(6):9233-9246. doi:10.1002/jcp.27602
Minnelli C, Piva F, Cecati M, et al. Meldonium Inhibits Cell Motility and Wound-Healing in Trabecular Meshwork Cells and Scleral Fibroblasts: Possible Applications in Glaucoma. Pharmaceuticals (Basel). 2023;16(4):594. Published 2023 Apr 15. doi:10.3390/ph16040594
Đurašević S, Stojković M, Sopta J, et al. The effects of meldonium on the acute ischemia/reperfusion liver injury in rats. Sci Rep. 2021;11(1):1305. Published 2021 Jan 14. doi:10.1038/s41598-020-80011-y
Stuart M, Schneider C, Steinbach K. Meldonium use by athletes at the Baku 2015 European Games. Br J Sports Med. 2016;50(11):694-698. doi:10.1136/bjsports-2015-095906
Gureev AP, Sadovnikova IS, Shaforostova EA, Starkov AA, Popov VN. Mildronate protects heart mtDNA from oxidative stress toxicity induced by exhaustive physical exercise. Arch Biochem Biophys. 2021;705:108892. doi:10.1016/j.abb.2021.108892.
Bezuglov E, Talibov O, Butovskiy M, Khaitin V, Achkasov E, et al. The Inclusion in WADA Prohibited List Is Not Always Supported by Scientific Evidence: A Narrative Review. Asian J Sports Med. 2021;12(2):e110753. https://doi.org/10.5812/asjsm.110753.
Liepinsh E, Dambrova M. The unusual pharmacokinetics of meldonium: Implications for doping. Pharmacol Res. 2016;111 :100. doi:10.1016/j.phrs.2016.05.029
Bellman V. Unlocking the Potential of Meldonium: From Performance Enhancement to Therapeutic Insights. Psychoactives. 2024; 3(2):235-247. https://doi.org/10.3390/psychoactives3020015
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Michał Ochwat, Katarzyna Dąbek, Maria Sudoł, Martyna Piekarska, Anna Skowronek, Gabriela Mierzwa, Aleksandra Kajtel, Maria Ochwat
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 17
Number of citations: 0