Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Quality in Sport

Mammography In Breast Cancer Screening – Current Knowledge, Challenges, The Impact of Artificial Intelligence, And Effectiveness With A Focus On Poland
  • Home
  • /
  • Mammography In Breast Cancer Screening – Current Knowledge, Challenges, The Impact of Artificial Intelligence, And Effectiveness With A Focus On Poland
  1. Home /
  2. Archives /
  3. Vol. 31 (2024) /
  4. Medical Sciences

Mammography In Breast Cancer Screening – Current Knowledge, Challenges, The Impact of Artificial Intelligence, And Effectiveness With A Focus On Poland

Authors

  • Maciej Pachana 5th Military Clinical Hospital with Polyclinic in Krakow https://orcid.org/0009-0001-5862-9755
  • Marcin Piersiak 4th Military Clinical Hospital with Polyclinic in Wrocław https://orcid.org/0009-0004-2199-4670
  • Hubert Sawczuk University Clinical Hospital in Wrocław https://orcid.org/0009-0003-2860-9002
  • Anna Tomasiewicz 4th Military Clinical Hospital with Polyclinic in Wrocław https://orcid.org/0000-0002-0068-3898
  • Jan Zabierowski 4th Military Clinical Hospital with Polyclinic in Wrocław https://orcid.org/0000-0002-3909-2657
  • Piotr Kukuła 4th Military Clinical Hospital with Polyclinic in Wrocław https://orcid.org/0009-0001-1474-1534
  • Julia Marschollek University Clinical Hospital in Wrocław https://orcid.org/0000-0002-7038-5431
  • Maciej Ziomek Wrocław Medical University https://orcid.org/0009-0007-8027-8983

DOI:

https://doi.org/10.12775/QS.2024.31.55967

Keywords

breast cancer, mammography, AI, Screening, Poland

Abstract

Mammography is a critical tool in breast cancer screening and secondary prevention, enabling early detection and significantly reducing breast cancer mortality. This literature review assesses the effectiveness of mammography in identifying early-stage tumors, discussing its advantages, limitations, and specific challenges. Additionally, advancements in imaging techniques, such as 3D tomosynthesis, are examined, especially for their enhanced sensitivity in women with dense breast tissue, which reduces structural overlap and improves diagnostic precision. The integration of artificial intelligence (AI) in mammographic image analysis opens new opportunities, supporting radiologists by automating the detection and classification of potential lesions, thereby increasing screening efficiency and reducing false-positive rates. However, effective implementation of AI requires seamless integration with clinical systems and ongoing research to refine algorithms for diverse clinical needs. Furthermore, legal frameworks are essential to delineate responsibility in AI-supported diagnostics. This review emphasizes the status of breast cancer screening in Poland, where participation rates remain low despite the availability of free screenings. This highlights the need for improved public awareness and accessibility, especially in underserved areas. Overall, the findings underscore the fundamental role of mammography in breast cancer detection, with AI and other technological advancements significantly enhancing diagnostic accuracy while identifying areas for further improvement.

Author Biographies

Maciej Pachana, 5th Military Clinical Hospital with Polyclinic in Krakow

Wrocławska 1-3, 30-901 Kraków

Marcin Piersiak, 4th Military Clinical Hospital with Polyclinic in Wrocław

Rudolfa Weigla 5, 50-981 Wrocław

Hubert Sawczuk, University Clinical Hospital in Wrocław

Borowska 213, 50-556 Wrocław

Anna Tomasiewicz, 4th Military Clinical Hospital with Polyclinic in Wrocław

Rudolfa Weigla 5, 50-981 Wrocław

Jan Zabierowski, 4th Military Clinical Hospital with Polyclinic in Wrocław

Rudolfa Weigla 5, 50-981 Wrocław

Piotr Kukuła, 4th Military Clinical Hospital with Polyclinic in Wrocław

Rudolfa Weigla 5, 50-981 Wrocław

Julia Marschollek, University Clinical Hospital in Wrocław

Borowska 213, 50-556 Wrocław

Maciej Ziomek, Wrocław Medical University

Ludwika Pasteura 1, 50-367 Wrocław

References

Beata S, Anna ZN, Hanna R. Breast Cancer-Epidemiology, Classification, Pathogenesis and Treatment (Review of Literature). Cancers. 2022;14(10). doi:10.3390/cancers14102569

Breast Cancer Prevention Programs / Preventive Programs / Prevention with NFZ / For the Patient / National Health Fund – Lesser Poland Regional Branch. Accessed October 29, 2024. https://www.nfz-krakow.pl/dla-pacjenta/profiaktyka-/programy-profilaktyczne/programy-profilaktyki-raka-piersi/

Warner E. Screening BRCA1 and BRCA2 Mutation Carriers for Breast Cancer. Cancers. 2018;10(12):477. doi:10.3390/cancers10120477

Szczeklik A, Gajewski P. Breast Cancer. Internal Medicine - A Concise Handbook. Accessed October 29, 2024. http://www.mp.pl/social/chapter/B01.X.G.1.

Wesołowska E. Mammary Gland. In: Radiology – Imaging Diagnostics: X-ray, CT, Ultrasound, and MRI. 3rd Edition. PZWL Medical Publishers; 2014:401-409.

Aristokli N, Polycarpou I, Themistocleous S, Sophocleous D, Mamais I. Comparison of the diagnostic performance of Magnetic Resonance Imaging (MRI), ultrasound and mammography for detection of breast cancer based on tumor type, breast density and patient’s history: A review. Radiography. 2022;28. doi:10.1016/j.radi.2022.01.006

Stephens M, Pradeep S, Khan A, Wynn M, Szczepura K, Mercer C. Skin tears in mammography: A narrative review. J Tissue Viability. 2023;32(4):577-584. doi:10.1016/j.jtv.2023.09.003

Strigel RM, Rollenhagen J, Burnside ES, et al. Screening Breast MRI Outcomes in Routine Clinical Practice: Comparison to BI-RADS Benchmarks. Acad Radiol. 2017;24(4):411-417. doi:10.1016/j.acra.2016.10.014

Vedantham S, Karellas A, Vijayaraghavan GR, Kopans DB. Digital Breast Tomosynthesis: State of the Art. Radiology. 2015;277(3):663-684. doi:10.1148/radiol.2015141303

Cserni G. Histological type and typing of breast carcinomas and the WHO classification changes over time. Pathologica. 2020;112(1):25. doi:10.32074/1591-951X-1-20

Tabár L, Dean PB, Tucker FL, et al. Breast cancers originating from the terminal ductal lobular units: In situ and invasive acinar adenocarcinoma of the breast, AAB. Eur J Radiol. 2022;152:110323. doi:10.1016/j.ejrad.2022.110323

Weaver O, Yang W. Imaging of Breast Cancers With Predilection for Nonmass Pattern of Growth: Invasive Lobular Carcinoma and DCIS—Does Imaging Capture It All? Am J Roentgenol. 2020;215(6):1504-1511. doi:10.2214/AJR.19.22027

Lilleborge M, Falk RS, Hovda T, Holmen MM, Ursin G, Hofvind S. Patterns of aggressiveness: risk of progression to invasive breast cancer by mammographic features of calcifications in screen-detected ductal carcinoma in situ. Acta Radiol Stockh Swed 1987. 2022;63(5):586-595. doi:10.1177/02841851211006319

Zielonke N, Kregting LM, Heijnsdijk EAM, et al. The potential of breast cancer screening in Europe. Int J Cancer. 2021;148(2):406-418. doi:10.1002/ijc.33204

Schiller-Fruehwirth I, Jahn B, Einzinger P, Zauner G, Urach C, Siebert U. The Long-Term Effectiveness and Cost Effectiveness of Organized versus Opportunistic Screening for Breast Cancer in Austria. Value Health. 2017;20(8):1048-1057. doi:10.1016/j.jval.2017.04.009

Gupta G, Jamwal N, Gupta R. The Chiraiya project: a retrospective analysis of breast cancer detection gaps addressed via mobile mammography in Jammu Province, India. BMC Public Health. 2024;24(1):2087. doi:10.1186/s12889-024-19622-3

Jasiura A, Dera I, Szlachcic K, Gorzel M, Zmonarska J. Breast cancer screening programmes in selected European countries and Poland. J Educ Health Sport. 2021;11(7):11-21. doi:10.12775/34598

Rogalska A. Physical activity, screening cancer, and savings rate as indicators of health responsibility. J Educ Health Sport. 2024;69:55028. doi:10.12775/JEHS.2024.69.55028

Mrożek-Gąsiorowska M, Tambor M. How COVID-19 has changed the utilization of different health care services in Poland. BMC Health Serv Res. 2024;24(1):105. doi:10.1186/s12913-024-10554-7

Løberg M, Lousdal ML, Bretthauer M, Kalager M. Benefits and harms of mammography screening. Breast Cancer Res. 2015;17(1):63. doi:10.1186/s13058-015-0525-z

Grimm LJ, Avery CS, Hendrick E, Baker JA. Benefits and Risks of Mammography Screening in Women Ages 40 to 49 Years. J Prim Care Community Health. 2022;13:21501327211058322. doi:10.1177/21501327211058322

Hudson S. Beyond Breast Density - Novel Uses of Automated Mammographic Analysis in Breast Cancer Screening. London School of Hygiene & Tropical Medicine; 2024. doi:10.17037/PUBS.04672661

Yoon JH, Kim EK. Deep Learning-Based Artificial Intelligence for Mammography. Korean J Radiol. 2021;22(8):1225. doi:10.3348/kjr.2020.1210

Lamb LR, Lehman CD, Gastounioti A, Conant EF, Bahl M. Artificial Intelligence (AI) for Screening Mammography, From the AJR Special Series on AI Applications. Am J Roentgenol. 2022;219(3):369-380. doi:10.2214/AJR.21.27071

Lauritzen AD, Lillholm M, Lynge E, Nielsen M, Karssemeijer N, Vejborg I. Early Indicators of the Impact of Using AI in Mammography Screening for Breast Cancer. Moy L, ed. Radiology. 2024;311(3):e232479. doi:10.1148/radiol.232479

Högberg C, Larsson S, Lång K. Anticipating artificial intelligence in mammography screening: views of Swedish breast radiologists. BMJ Health Care Inform. 2023;30(1):e100712. doi:10.1136/bmjhci-2022-100712

Dang LA, Chazard E, Poncelet E, et al. Impact of artificial intelligence in breast cancer screening with mammography. Breast Cancer. 2022;29(6):967-977. doi:10.1007/s12282-022-01375-9

Ma S, Li Y, Yin J, et al. Prospective study of AI-assisted prediction of breast malignancies in physical health examinations: role of off-the-shelf AI software and comparison to radiologist performance. Front Oncol. 2024;14:1374278. doi:10.3389/fonc.2024.1374278

Downloads

  • PDF

Published

2024-11-12

How to Cite

1.
PACHANA, Maciej, PIERSIAK, Marcin, SAWCZUK, Hubert, TOMASIEWICZ, Anna, ZABIEROWSKI, Jan, KUKUŁA, Piotr, MARSCHOLLEK, Julia and ZIOMEK, Maciej. Mammography In Breast Cancer Screening – Current Knowledge, Challenges, The Impact of Artificial Intelligence, And Effectiveness With A Focus On Poland. Quality in Sport. Online. 12 November 2024. Vol. 31, p. 55967. [Accessed 21 May 2025]. DOI 10.12775/QS.2024.31.55967.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 31 (2024)

Section

Medical Sciences

License

Copyright (c) 2024 Maciej Pachana, Marcin Piersiak, Hubert Sawczuk, Anna Tomasiewicz, Jan Zabierowski, Piotr Kukuła, Julia Marschollek, Maciej Ziomek

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats

Number of views and downloads: 181
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

breast cancer, mammography, AI, Screening, Poland
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop