L-arginine Supplementation in Endurance Athletes: A Systematic Review of Recovery Mechanisms and Performance Enhancement
DOI:
https://doi.org/10.12775/QS.2024.33.55867Keywords
L-arginine, endurance sports, nitric oxide, muscle recovery, athletic performance, dietary supplementationAbstract
L-arginine, a semi-essential amino acid, has garnered significant attention for its potential to enhance athletic performance, particularly within endurance sports. Recognized for its multifaceted roles in cardiovascular, immune, and metabolic functions, L-arginine serves as a precursor to biologically active molecules, including nitric oxide (NO), creatine, and polyamines, which are integral to muscle function and recovery. Through its ability to stimulate NO production, L-arginine promotes vasodilation, enhancing blood flow and oxygen delivery to active muscles, thereby improving exercise efficiency and endurance. Additionally, L-arginine influences muscle protein synthesis (MPS) via activation of the mTOR signaling pathway, aids in ammonia detoxification within the urea cycle, and supports cellular energetics by facilitating ATP production. These mechanisms collectively underscore its potential to support prolonged physical exertion, reduce muscle fatigue, and expedite post-exercise recovery. This systematic review examines current evidence on L-arginine supplementation in endurance athletes, focusing on its physiological impacts, mechanisms of action, and potential to enhance recovery and performance. Despite promising findings, variability in individual responses and mixed results across studies highlight the need for refined dosing strategies and further research into long-term safety and efficacy. This review provides a comprehensive overview of L-arginine's potential as a supplement in sports nutrition, aiming to inform evidence-based recommendations for its application in endurance training and recovery strategies.
References
Aitken, L. M., Chaboyer, W., Jeffrey, C., Martin, B., Whitty, J. A., Schuetz, M., & Richmond, T. S. (2016). Indicators of injury recovery identified by patients, family members and clinicians. Injury, 47(12), 2655–2663. https://doi.org/10.1016/j.injury.2016.10.006
Bailey, S. J., Winyard, P. G., Vanhatalo, A., Blackwell, J. R., DiMenna, F. J., Wilkerson, D. P., & Jones, A. M. (2010). Acute l-arginine supplementation reduces the O2 cost of moderate-intensity exercise and enhances high-intensity exercise tolerance. Journal of Applied Physiology, 109(5), 1394–1403. https://doi.org/10.1152/japplphysiol.00503.2010
Botchlett, R., Lawler, J. M., & Wu, G. (2018). L-Arginine and L-Citrulline in sports nutrition and health. In Elsevier eBooks(pp. 645–652). https://doi.org/10.1016/b978-0-12-813922-6.00055-2
Bowyer, A., & Royse, C. (2018). A matter of perspective – Objective versus subjective outcomes in the assessment of quality of recovery. Best Practice & Research Clinical Anaesthesiology, 32(3–4), 287–294. https://doi.org/10.1016/j.bpa.2018.02.003
Brooks, J. R., Oketch-Rabah, H., Dog, T. L., Gorecki, D. K. J., Barrett, M. L., Cantilena, L., Chung, M., Costello, R. B., Dwyer, J., Hardy, M. L., Jordan, S. A., Maughan, R. J., Marles, R. J., Osterberg, R. E., Rodda, B. E., Wolfe, R. R., Zuniga, J. M., Valerio, L. G., Jones, D., . . . Sarma, N. D. (2016). Safety and performance benefits of arginine supplements for military personnel: a systematic review. Nutrition Reviews, 74(11), 708–721. https://doi.org/10.1093/nutrit/nuw040
Burgomaster, K. A., Heigenhauser, G. J. F., & Gibala, M. J. (2006). Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance. Journal of Applied Physiology, 100(6), 2041–2047. https://doi.org/10.1152/japplphysiol.01220.2005
Camic, C. L., Housh, T. J., Zuniga, J. M., Hendrix, R. C., Mielke, M., Johnson, G. O., & Schmidt, R. J. (2010). Effects of Arginine-Based supplements on the physical working capacity at the fatigue threshold. The Journal of Strength and Conditioning Research, 24(5), 1306–1312. https://doi.org/10.1519/jsc.0b013e3181d68816
Casonatto, J., & Cavalari, J. V. (2022). A single dosage of L-Arginine oral supplementation induced Post-Aerobic exercise hypotension in hypertensive patients. Journal of Dietary Supplements, 20(5), 735–748. https://doi.org/10.1080/19390211.2022.2106006
Casonatto, J., Enokida, D. M., & Grandolfi, K. (2019). Inter-Individual Responses to Citrulline Malate Oral Supplementation on Post-Exercise Hypotension in Hypertensives: A 24-Hour analysis. Arquivos Brasileiros De Cardiologia. https://doi.org/10.5935/abc.20190115
Casonatto, J., Zago, D. M., Enokida, D. M., Grandolfi, K., & Aguiar, A. F. (2019). L-ARGININE SUPPLEMENTATION IMPROVES POST-EXERCISE HYPOTENSION IN ELDERLY WOMEN. Revista Brasileira De Medicina Do Esporte, 25(4), 333–337. https://doi.org/10.1590/1517-869220192504182865
Chen, S., Kim, W., Henning, S. M., Carpenter, C. L., & Li, Z. (2010). Arginine and antioxidant supplement on performance in elderly male cyclists: a randomized controlled trial. Journal of the International Society of Sports Nutrition, 7(1). https://doi.org/10.1186/1550-2783-7-13
Curran, J. N., Winter, D. C., & Bouchier‐Hayes, D. (2006). Biological fate and clinical implications of arginine metabolism in tissue healing. Wound Repair and Regeneration, 14(4), 376–386. https://doi.org/10.1111/j.1743-6109.2006.00151.x
Cynober, L., Bier, D. M., Kadowaki, M., Morris, S. M., Elango, R., & Smriga, M. (2016). Proposals for upper limits of safe intake for arginine and tryptophan in young adults and an upper limit of safe intake for leucine in the elderly. Journal of Nutrition, 146(12), 2652S-2654S. https://doi.org/10.3945/jn.115.228478
De Lima, F. F., Da Silva, T. F., Neto, M. M., Toscano, L. T., Da Silva, C. S. O., & Silva, A. S. (2018). Effect of L-arginine intake on exercise-induced hypotension. Nutrición Hospitalaria, 35(5), 1195. https://doi.org/10.20960/nh.1708
[Effect of spironolactone on L-arginine/iNOS/NO pathway of aortic adventitia in spontaneously hypertensive rats]. (2010, February 9). PubMed. https://pubmed.ncbi.nlm.nih.gov/20367944/
Effects of N-acetylcysteine and L-arginine in the antioxidant system of C2C12 cells. (2015, June 1). PubMed. https://pubmed.ncbi.nlm.nih.gov/26205767/
[Efficacy comparison between 5 mg perindopril arginine salt and 4 mg perindopril tert-butylamine salt for patients with mild to moderate essential hypertension]. (2015, October 1). PubMed. https://pubmed.ncbi.nlm.nih.gov/26652987/
Elango, R. (2023). Tolerable upper intake level for individual amino acids in humans: A narrative review of recent clinical studies. Advances in Nutrition, 14(4), 885–894. https://doi.org/10.1016/j.advnut.2023.04.004
Elliott, W. J., & Bistrika, E. A. (2017). Perindopril arginine and amlodipine besylate for hypertension: a safety evaluation. Expert Opinion on Drug Safety, 17(2), 207–216. https://doi.org/10.1080/14740338.2018.1397129
Fidanboylu, M., & Thomas, S. A. (2024). L-Arginine and asymmetric dimethylarginine (ADMA) transport across the mouse blood-brain and blood-CSF barriers: Evidence of saturable transport at both interfaces and CNS to blood efflux. PLoS ONE, 19(10), e0305318. https://doi.org/10.1371/journal.pone.0305318
Fujiwara, T., Kanazawa, S., Ichibori, R., Tanigawa, T., Magome, T., Shingaki, K., Miyata, S., Tohyama, M., & Hosokawa, K. (2014). L-Arginine Stimulates Fibroblast Proliferation through the GPRC6A-ERK1/2 and PI3K/Akt Pathway. PLoS ONE, 9(3), e92168. https://doi.org/10.1371/journal.pone.0092168
Gonçalves, L. C., Bessa, A., Freitas-Dias, R., Luzes, R., Werneck-De-Castro, J. P. S., Bassini, A., & Cameron, L. (2012). A sportomics strategy to analyze the ability of arginine to modulate both ammonia and lymphocyte levels in blood after high-intensity exercise. Journal of the International Society of Sports Nutrition, 9(1). https://doi.org/10.1186/1550-2783-9-30
Greene, J. M., Feugang, J. M., Pfeiffer, K. E., Stokes, J. V., Bowers, S. D., & Ryan, P. L. (2013). L-arginine enhances cell proliferation and reduces apoptosis in human endometrial RL95-2 cells. Reproductive Biology and Endocrinology, 11(1), 15. https://doi.org/10.1186/1477-7827-11-15
Grimble, G. K. (2007a). Adverse gastrointestinal effects of arginine and related amino acids. Journal of Nutrition, 137(6), 1693S-1701S. https://doi.org/10.1093/jn/137.6.1693s
Grimble, G. K. (2007b). Adverse gastrointestinal effects of arginine and related amino acids. Journal of Nutrition, 137(6), 1693S-1701S. https://doi.org/10.1093/jn/137.6.1693s
Hiratsu, A., Tataka, Y., Namura, S., Nagayama, C., Hamada, Y., & Miyashita, M. (2022). The effects of acute and chronic oral L-arginine supplementation on exercise-induced ammonia accumulation and exercise performance in healthy young men: A randomised, double-blind, cross-over, placebo-controlled trial. Journal of Exercise Science & Fitness, 20(2), 140–147. https://doi.org/10.1016/j.jesf.2022.02.003
Hoseini, A., Dehnou, V. V., Azizi, M., & Alam, M. K. (2015). Effect of High-Intensity Interval Training (HIT) for 4 Weeks with and without L-Arginine Supplementation on the Performance of Women’s Futsal Players. Quarterly of Horizon of Medical Sciences, 21(2), 113–119. https://doi.org/10.18869/acadpub.hms.21.2.113
Hoseini, S. M., Khan, M. A., Yousefi, M., & Costas, B. (2020). Roles of arginine in fish nutrition and health: insights for future researches. Reviews in Aquaculture, 12(4), 2091–2108. https://doi.org/10.1111/raq.12424
Huang, J., Ladeiras, D., Yu, Y., Ming, X., & Yang, Z. (2021). Detrimental effects of chronic L-Arginine rich food on aging kidney. Frontiers in Pharmacology, 11. https://doi.org/10.3389/fphar.2020.582155
Juan, E., De Lucia, M., Beaud, V., Oddo, M., Rusca, M., Viceic, D., Clarke, S., & Rossetti, A. O. (2018). How do you feel? Subjective perception of recovery as a reliable surrogate of cognitive and functional outcome in cardiac arrest survivors. Critical Care Medicine, 46(4), e286–e293. https://doi.org/10.1097/ccm.0000000000002946
Kalman, D., Harvey, P., Ojalvo, S. P., & Komorowski, J. (2016). Randomized prospective Double-Blind studies to evaluate the cognitive effects of Inositol-Stabilized Arginine silicate in healthy physically active adults. Nutrients, 8(11), 736. https://doi.org/10.3390/nu8110736
Kang, K., Shu, X., Zhong, J., & Yu, T. (2014). Effect of L-arginine on immune function: a meta-analysis. PubMed, 23(3), 351–359. https://doi.org/10.6133/apjcn.2014.23.3.09
Kong, X., Tan, B., Yin, Y., Gao, H., Li, X., Jaeger, L. A., Bazer, F. W., & Wu, G. (2011a). l-Arginine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. The Journal of Nutritional Biochemistry, 23(9), 1178–1183. https://doi.org/10.1016/j.jnutbio.2011.06.012
Kong, X., Tan, B., Yin, Y., Gao, H., Li, X., Jaeger, L. A., Bazer, F. W., & Wu, G. (2011b). l-Arginine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. The Journal of Nutritional Biochemistry, 23(9), 1178–1183. https://doi.org/10.1016/j.jnutbio.2011.06.012
Lagaye, S., Derrien, M., Menu, E., Coı̈To, C., Tresoldi, E., MauclèRe, P., Scarlatti, G., Chaouat, G., Barré-Sinoussi, F., & Bomsel, M. (2001). Cell-to-Cell Contact Results in a Selective Translocation of Maternal Human Immunodeficiency Virus Type 1 Quasispecies across a Trophoblastic Barrier by both Transcytosis and Infection. Journal of Virology, 75(10), 4780–4791. https://doi.org/10.1128/jvi.75.10.4780-4791.2001
Líndez, A. M. I., & Reith, W. (2021). Arginine-dependent immune responses. Cellular and Molecular Life Sciences, 78(13), 5303–5324. https://doi.org/10.1007/s00018-021-03828-4
Lloyd, C., King, R., & Moore, L. (2009). Subjective and Objective Indicators of Recovery in Severe Mental Illness: a Cross-Sectional Study. International Journal of Social Psychiatry, 56(3), 220–229. https://doi.org/10.1177/0020764009105703
Lomonosova, Y. N., Shenkman, B. S., Kalamkarov, G. R., Kostrominova, T. Y., & Nemirovskaya, T. L. (2014). L-arginine Supplementation Protects Exercise Performance and Structural Integrity of Muscle Fibers after a Single Bout of Eccentric Exercise in Rats. PLoS ONE, 9(4), e94448. https://doi.org/10.1371/journal.pone.0094448
Morris, S. M. (2002). REGULATION OFENZYMES OF THEUREACYCLE ANDARGININEMETABOLISM. Annual Review of Nutrition, 22(1), 87–105. https://doi.org/10.1146/annurev.nutr.22.110801.140547
Namba, H., Hamada, H., Kimura, T., Sekikawa, K., Kamikawa, N., Ishio-Ueoka, H., Kajiwara, T., Sato, Y. M., Aizawa, F., & Yoshida, T. (2022). Effects of L-arginine on impaired blood fluidity after high-intensity exercise: An in vitro evaluation. Clinical Hemorheology and Microcirculation, 82(1), 1–12. https://doi.org/10.3233/ch-211201
Okon, I. A., Bes, J. A., Udoakag, I. S., Udia, J. P., & Owu, D. U. (2022). L-Arginine oral supplementation reverses hematological and electrolytes imbalances in Adrenaline-Induced myocardial injury in rats. Journal of Medical Sciences(Faisalabad), 22(3), 90–98. https://doi.org/10.3923/jms.2022.90.98
Paulis, L., Matuskova, J., Adamcova, M., Pelouch, V., Simko, J., Krajcirovicova, K., Potacova, A., Hulin, I., Janega, P., Pechanova, O., & Simko, F. (2008). Regression of left ventricular hypertrophy and aortic remodelling in NO‐deficient hypertensive rats: effect of l‐arginine and spironolactone. Acta Physiologica, 194(1), 45–55. https://doi.org/10.1111/j.1748-1716.2008.01862.x
Poeggeler, B., Robenek, H., & Pappolla, M. A. (2021). Editorial: Pharmacology of L-Arginine and L-Arginine-Rich Food. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.743788
Powers, R. W., Chen, L., Russell, P. T., & Larsen, W. J. (1995). Gonadotropin-stimulated regulation of blood-follicle barrier is mediated by nitric oxide. AJP Endocrinology and Metabolism, 269(2), E290–E298. https://doi.org/10.1152/ajpendo.1995.269.2.e290
Pranskunas, A., Pranskuniene, Z., Bernatoniene, J., Vaitkaitiene, E., & Brazaitis, M. (2015). Microcirculatory effects of L-arginine during acute anaerobic exercise in healthy men: A pilot study. Journal of Exercise Science & Fitness, 13(2), 57–62. https://doi.org/10.1016/j.jesf.2015.04.001
Proliferative, anti-apoptotic and immune-enhancing effects of L-arginine in culture of skin fibroblasts. (2017, September 1). PubMed. https://pubmed.ncbi.nlm.nih.gov/28954469/
Ranchordas, M. K., & Whitehead, T. (2011). Effect of acute L-arginine supplementation on 20 km time trial performance in competitive male cyclists. British Journal of Sports Medicine, 45(15), A11.2-A11. https://doi.org/10.1136/bjsports-2011-090606.35
Rezaei, S., Gholamalizadeh, M., Tabrizi, R., Nowrouzi‐Sohrabi, P., Rastgoo, S., & Doaei, S. (2021). The effect of L‐arginine supplementation on maximal oxygen uptake: A systematic review and meta‐analysis. Physiological Reports, 9(3). https://doi.org/10.14814/phy2.14739
Roe, D., Mashiach-Eizenberg, M., & Lysaker, P. H. (2011). The relation between objective and subjective domains of recovery among persons with schizophrenia-related disorders. Schizophrenia Research, 131(1–3), 133–138. https://doi.org/10.1016/j.schres.2011.05.023
Saifaddin, D. L., Mohammed, S. S., Rahim, H. A., Ghanbari, N., Kareem, D. A., Abdollah, H. H., & Omar, S. M. (2023). Endurance training and L-arginine intake: Their effect on antioxidant indices in the heart muscles of rats. Nutrition and Health. https://doi.org/10.1177/02601060231187514
Sakurai, T., Kashimura, O., Kano, Y., Ohno, H., Ji, L. L., Izawa, T., & Best, T. M. (2013). Role of nitric oxide in muscle regeneration following eccentric muscle contractions in rat skeletal muscle. The Journal of Physiological Sciences, 63(4), 263–270. https://doi.org/10.1007/s12576-013-0262-y
Schwedhelm, E., Maas, R., Freese, R., Jung, D., Lukacs, Z., Jambrecina, A., Spickler, W., Schulze, F., & Böger, R. H. (2007). Pharmacokinetic and pharmacodynamic properties of oral L‐citrulline and L‐arginine: impact on nitric oxide metabolism. British Journal of Clinical Pharmacology, 65(1), 51–59. https://doi.org/10.1111/j.1365-2125.2007.02990.x
Shao, A., & Hathcock, J. N. (2008). Risk assessment for the amino acids taurine, l-glutamine and l-arginine. Regulatory Toxicology and Pharmacology, 50(3), 376–399. https://doi.org/10.1016/j.yrtph.2008.01.004
Shashar, M., Hod, T., Chernichovski, T., Angel, A., Kazan, S., Grupper, A., Naveh, S., Bassat, O. K., Weinstein, T., & Schwartz, I. F. (2018). Mineralocorticoid receptor blockade improves arginine transport and nitric oxide generation through modulation of cationic amino acid transporter-1 in endothelial cells. Nitric Oxide, 80, 24–31. https://doi.org/10.1016/j.niox.2018.07.007
Shen, S., & Hua, C. (2010). Effect ofL-arginine on the expression of Bcl-2 and Bax in the placenta of fetal growth restriction. The Journal of Maternal-Fetal & Neonatal Medicine, 24(6), 822–826. https://doi.org/10.3109/14767058.2010.531315
Šimko, F., Potáčová, A., Pelouch, V., Paulis, L., Matuskova, J., Krajčirovičová, K., Pecháňová, O., & Adamcová, M. (2007). Spontaneous, L-Arginine-Induced and Spironolactone-Induced regression of protein remodeling of the left ventricle in L-NAME-Induced hypertension. Physiological Research, S55–S62. https://doi.org/10.33549/physiolres.931398
Speer, H., D’Cunha, N. M., Davies, M. J., McKune, A. J., & Naumovski, N. (2020). The physiological effects of amino acids arginine and citrulline: Is there a basis for development of a beverage to promote endurance performance? A narrative review of orally administered supplements. Beverages, 6(1), 11. https://doi.org/10.3390/beverages6010011
Šušnjara, P., Mihaljević, Z., Stupin, A., Kolobarić, N., Matić, A., Jukić, I., Kralik, Z., Kralik, G., Miloloža, A., Pavošević, T., Šerić, V., Lončarić, Z., Kerovec, D., Galović, O., & Drenjančević, I. (2023). Consumption of nutritionally enriched hen eggs enhances Endothelium-Dependent vasodilation via cyclooxygenase metabolites in healthy young People—A randomized study. Nutrients, 15(7), 1599. https://doi.org/10.3390/nu15071599
Tan, B. (2015). L-Arginine improves DNA synthesis in LPS-challenged enterocytes. Frontiers in Bioscience, 20(6), 989–1003. https://doi.org/10.2741/4352
Tripathi, P., Chandra, M., & Misra, M. K. (2009). Oral administration of L‐Arginine in patients with angina or following myocardial infarction may be protective by increasing plasma superoxide dismutase and total thiols with reduction in serum cholesterol and xanthine oxidase. Oxidative Medicine and Cellular Longevity, 2(4), 231–237. https://doi.org/10.4161/oxim.2.4.9233
Trofimova, E. S., Zykova, M. V., Danilets, M. G., Ligacheva, A. A., Sherstoboev, E. Y., Selivanova, N. S., Azarkina, L. A., Zhirkova, A. M., Zhang, Y., Perminova, I. V., Zhdanov, V. V., & Belousov, M. V. (2024). Effect of modified forms of sodium humate POWHUMUS on the balance of arginine in peritoneal macrophages of intact mice. Bulletin of Experimental Biology and Medicine, 177(1), 68–73. https://doi.org/10.1007/s10517-024-06133-9
Viribay, A., Burgos, J., Fernández-Landa, J., Seco-Calvo, J., & Mielgo-Ayuso, J. (2020a). Effects of arginine Supplementation on Athletic Performance Based on Energy Metabolism: A Systematic Review and Meta-Analysis. Nutrients, 12(5), 1300. https://doi.org/10.3390/nu12051300
Viribay, A., Burgos, J., Fernández-Landa, J., Seco-Calvo, J., & Mielgo-Ayuso, J. (2020b). Effects of arginine Supplementation on Athletic Performance Based on Energy Metabolism: A Systematic Review and Meta-Analysis. Nutrients, 12(5), 1300. https://doi.org/10.3390/nu12051300
Viribay, A., Burgos, J., Fernández-Landa, J., Seco-Calvo, J., & Mielgo-Ayuso, J. (2020c). Effects of arginine Supplementation on Athletic Performance Based on Energy Metabolism: A Systematic Review and Meta-Analysis. Nutrients, 12(5), 1300. https://doi.org/10.3390/nu12051300
Wang, R., Jiao, H., Zhao, J., Wang, X., & Lin, H. (2018a). L-Arginine enhances protein synthesis by phosphorylating MTOR (THR 2446) in a nitric Oxide-Dependent manner in C2C12 cells. Oxidative Medicine and Cellular Longevity, 2018, 1–13. https://doi.org/10.1155/2018/7569127
Wang, R., Jiao, H., Zhao, J., Wang, X., & Lin, H. (2018b). L-Arginine enhances protein synthesis by phosphorylating MTOR (THR 2446) in a nitric Oxide-Dependent manner in C2C12 cells. Oxidative Medicine and Cellular Longevity, 2018, 1–13. https://doi.org/10.1155/2018/7569127
Willoughby, D. S. (2015). INTRACELLULAR MECHANISTIC ROLE OF NITRIC OXIDE: A COMPARATIVE ANALYSIS OF THE EFFECTIVENESS OF L-ARGININE AND L-CITRULLINE SUPPLEMENTATION ON NITRIC OXIDE SYNTHESIS AND SUBSEQUENT EXERCISE PERFORMANCE IN HUMANS. International Journal of Food and Nutritional Science, 2(1), 1–8. https://doi.org/10.15436/2377-0619.15.010
Wu, G., Bazer, F. W., Davis, T. A., Kim, S. W., Li, P., Rhoads, J. M., Satterfield, M. C., Smith, S. B., Spencer, T. E., & Yin, Y. (2008). Arginine metabolism and nutrition in growth, health and disease. Amino Acids, 37(1), 153–168. https://doi.org/10.1007/s00726-008-0210-y
Wu, G., Meininger, C. J., McNeal, C. J., Bazer, F. W., & Rhoads, J. M. (2021). Role of L-Arginine in nitric oxide synthesis and health in humans. In Advances in experimental medicine and biology (pp. 167–187). https://doi.org/10.1007/978-3-030-74180-8_10
Wu, G., & Morris, S. M. (1998). Arginine metabolism: nitric oxide and beyond. Biochemical Journal, 336(1), 1–17. https://doi.org/10.1042/bj3360001
Yaman, H., Sönmez, G. T., & Gürel, K. (2010). Effects of oral L-arginine supplementation on vasodilation and O2max in male soccer players. Biomedical Human Kinetics, 2(2010), 25–29. https://doi.org/10.2478/v10101-010-0006-x
Yuan, C., Ding, Y., He, Q., Azzam, M., Lu, J., & Zou, X. (2015). L-arginine upregulates the gene expression of target of rapamycin signaling pathway and stimulates protein synthesis in chicken intestinal epithelial cells. Poultry Science, 94(5), 1043–1051. https://doi.org/10.3382/ps/pev051
Zheng, X., Liu, T., Chen, X., Chen, X., Jiang, J., & Hu, P. (2015). Investigation of a potential pharmacokinetic interaction between perindopril arginine and amlodipine when administered as a single perindopril/amlodipine fixed-dose combination tablet in healthy Chinese male volunteers. International Journal of Clinical Pharmacology and Therapeutics, 54(01), 43–51. https://doi.org/10.5414/cp202250
Zhou, Y., Liu, G., Huang, H., & Wu, J. (2021). Advances and impact of arginine-based materials in wound healing. Journal of Materials Chemistry B, 9(34), 6738–6750. https://doi.org/10.1039/d1tb00958c
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Łukasz Karoń, Anna Ewa Zygmunt, Karolina Karoń, Wojciech Grabowski, Grzegorz Drapała, Emilia Pedrycz, Daria Pedrycz

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 302
Number of citations: 0