Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Quality in Sport

L-arginine Supplementation in Endurance Athletes: A Systematic Review of Recovery Mechanisms and Performance Enhancement
  • Home
  • /
  • L-arginine Supplementation in Endurance Athletes: A Systematic Review of Recovery Mechanisms and Performance Enhancement
  1. Home /
  2. Archives /
  3. Vol. 33 (2024) /
  4. Medical Sciences

L-arginine Supplementation in Endurance Athletes: A Systematic Review of Recovery Mechanisms and Performance Enhancement

Authors

  • Łukasz Karoń Department of Pathology and Molecular Diagnostics, Medical University of Silesia in Katowice https://orcid.org/0009-0009-5083-8307
  • Anna Ewa Zygmunt Department of Pathology and Molecular Diagnostics, Medical University of Silesia in Katowice https://orcid.org/0009-0002-5849-6347
  • Karolina Karoń Municipal Hospital in Zabrze https://orcid.org/0009-0005-0356-8907
  • Wojciech Grabowski Municipal Hospital in Zabrze https://orcid.org/0009-0006-9238-1411
  • Grzegorz Drapała Wojewódzki Szpital Zespolony w Kielcach https://orcid.org/0009-0008-1492-1544
  • Emilia Pedrycz Wojewódzki Szpital Zespolony w Kielcach https://orcid.org/0009-0006-2751-2227
  • Daria Pedrycz Department of Family Medicine, Medical University of Białystok https://orcid.org/0009-0001-4988-5992

DOI:

https://doi.org/10.12775/QS.2024.33.55867

Keywords

L-arginine, endurance sports, nitric oxide, muscle recovery, athletic performance, dietary supplementation

Abstract

L-arginine, a semi-essential amino acid, has garnered significant attention for its potential to enhance athletic performance, particularly within endurance sports. Recognized for its multifaceted roles in cardiovascular, immune, and metabolic functions, L-arginine serves as a precursor to biologically active molecules, including nitric oxide (NO), creatine, and polyamines, which are integral to muscle function and recovery. Through its ability to stimulate NO production, L-arginine promotes vasodilation, enhancing blood flow and oxygen delivery to active muscles, thereby improving exercise efficiency and endurance. Additionally, L-arginine influences muscle protein synthesis (MPS) via activation of the mTOR signaling pathway, aids in ammonia detoxification within the urea cycle, and supports cellular energetics by facilitating ATP production. These mechanisms collectively underscore its potential to support prolonged physical exertion, reduce muscle fatigue, and expedite post-exercise recovery. This systematic review examines current evidence on L-arginine supplementation in endurance athletes, focusing on its physiological impacts, mechanisms of action, and potential to enhance recovery and performance. Despite promising findings, variability in individual responses and mixed results across studies highlight the need for refined dosing strategies and further research into long-term safety and efficacy. This review provides a comprehensive overview of L-arginine's potential as a supplement in sports nutrition, aiming to inform evidence-based recommendations for its application in endurance training and recovery strategies.

References

Aitken, L. M., Chaboyer, W., Jeffrey, C., Martin, B., Whitty, J. A., Schuetz, M., & Richmond, T. S. (2016). Indicators of injury recovery identified by patients, family members and clinicians. Injury, 47(12), 2655–2663. https://doi.org/10.1016/j.injury.2016.10.006

Bailey, S. J., Winyard, P. G., Vanhatalo, A., Blackwell, J. R., DiMenna, F. J., Wilkerson, D. P., & Jones, A. M. (2010). Acute l-arginine supplementation reduces the O2 cost of moderate-intensity exercise and enhances high-intensity exercise tolerance. Journal of Applied Physiology, 109(5), 1394–1403. https://doi.org/10.1152/japplphysiol.00503.2010

Botchlett, R., Lawler, J. M., & Wu, G. (2018). L-Arginine and L-Citrulline in sports nutrition and health. In Elsevier eBooks(pp. 645–652). https://doi.org/10.1016/b978-0-12-813922-6.00055-2

Bowyer, A., & Royse, C. (2018). A matter of perspective – Objective versus subjective outcomes in the assessment of quality of recovery. Best Practice & Research Clinical Anaesthesiology, 32(3–4), 287–294. https://doi.org/10.1016/j.bpa.2018.02.003

Brooks, J. R., Oketch-Rabah, H., Dog, T. L., Gorecki, D. K. J., Barrett, M. L., Cantilena, L., Chung, M., Costello, R. B., Dwyer, J., Hardy, M. L., Jordan, S. A., Maughan, R. J., Marles, R. J., Osterberg, R. E., Rodda, B. E., Wolfe, R. R., Zuniga, J. M., Valerio, L. G., Jones, D., . . . Sarma, N. D. (2016). Safety and performance benefits of arginine supplements for military personnel: a systematic review. Nutrition Reviews, 74(11), 708–721. https://doi.org/10.1093/nutrit/nuw040

Burgomaster, K. A., Heigenhauser, G. J. F., & Gibala, M. J. (2006). Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance. Journal of Applied Physiology, 100(6), 2041–2047. https://doi.org/10.1152/japplphysiol.01220.2005

Camic, C. L., Housh, T. J., Zuniga, J. M., Hendrix, R. C., Mielke, M., Johnson, G. O., & Schmidt, R. J. (2010). Effects of Arginine-Based supplements on the physical working capacity at the fatigue threshold. The Journal of Strength and Conditioning Research, 24(5), 1306–1312. https://doi.org/10.1519/jsc.0b013e3181d68816

Casonatto, J., & Cavalari, J. V. (2022). A single dosage of L-Arginine oral supplementation induced Post-Aerobic exercise hypotension in hypertensive patients. Journal of Dietary Supplements, 20(5), 735–748. https://doi.org/10.1080/19390211.2022.2106006

Casonatto, J., Enokida, D. M., & Grandolfi, K. (2019). Inter-Individual Responses to Citrulline Malate Oral Supplementation on Post-Exercise Hypotension in Hypertensives: A 24-Hour analysis. Arquivos Brasileiros De Cardiologia. https://doi.org/10.5935/abc.20190115

Casonatto, J., Zago, D. M., Enokida, D. M., Grandolfi, K., & Aguiar, A. F. (2019). L-ARGININE SUPPLEMENTATION IMPROVES POST-EXERCISE HYPOTENSION IN ELDERLY WOMEN. Revista Brasileira De Medicina Do Esporte, 25(4), 333–337. https://doi.org/10.1590/1517-869220192504182865

Chen, S., Kim, W., Henning, S. M., Carpenter, C. L., & Li, Z. (2010). Arginine and antioxidant supplement on performance in elderly male cyclists: a randomized controlled trial. Journal of the International Society of Sports Nutrition, 7(1). https://doi.org/10.1186/1550-2783-7-13

Curran, J. N., Winter, D. C., & Bouchier‐Hayes, D. (2006). Biological fate and clinical implications of arginine metabolism in tissue healing. Wound Repair and Regeneration, 14(4), 376–386. https://doi.org/10.1111/j.1743-6109.2006.00151.x

Cynober, L., Bier, D. M., Kadowaki, M., Morris, S. M., Elango, R., & Smriga, M. (2016). Proposals for upper limits of safe intake for arginine and tryptophan in young adults and an upper limit of safe intake for leucine in the elderly. Journal of Nutrition, 146(12), 2652S-2654S. https://doi.org/10.3945/jn.115.228478

De Lima, F. F., Da Silva, T. F., Neto, M. M., Toscano, L. T., Da Silva, C. S. O., & Silva, A. S. (2018). Effect of L-arginine intake on exercise-induced hypotension. Nutrición Hospitalaria, 35(5), 1195. https://doi.org/10.20960/nh.1708

[Effect of spironolactone on L-arginine/iNOS/NO pathway of aortic adventitia in spontaneously hypertensive rats]. (2010, February 9). PubMed. https://pubmed.ncbi.nlm.nih.gov/20367944/

Effects of N-acetylcysteine and L-arginine in the antioxidant system of C2C12 cells. (2015, June 1). PubMed. https://pubmed.ncbi.nlm.nih.gov/26205767/

[Efficacy comparison between 5 mg perindopril arginine salt and 4 mg perindopril tert-butylamine salt for patients with mild to moderate essential hypertension]. (2015, October 1). PubMed. https://pubmed.ncbi.nlm.nih.gov/26652987/

Elango, R. (2023). Tolerable upper intake level for individual amino acids in humans: A narrative review of recent clinical studies. Advances in Nutrition, 14(4), 885–894. https://doi.org/10.1016/j.advnut.2023.04.004

Elliott, W. J., & Bistrika, E. A. (2017). Perindopril arginine and amlodipine besylate for hypertension: a safety evaluation. Expert Opinion on Drug Safety, 17(2), 207–216. https://doi.org/10.1080/14740338.2018.1397129

Fidanboylu, M., & Thomas, S. A. (2024). L-Arginine and asymmetric dimethylarginine (ADMA) transport across the mouse blood-brain and blood-CSF barriers: Evidence of saturable transport at both interfaces and CNS to blood efflux. PLoS ONE, 19(10), e0305318. https://doi.org/10.1371/journal.pone.0305318

Fujiwara, T., Kanazawa, S., Ichibori, R., Tanigawa, T., Magome, T., Shingaki, K., Miyata, S., Tohyama, M., & Hosokawa, K. (2014). L-Arginine Stimulates Fibroblast Proliferation through the GPRC6A-ERK1/2 and PI3K/Akt Pathway. PLoS ONE, 9(3), e92168. https://doi.org/10.1371/journal.pone.0092168

Gonçalves, L. C., Bessa, A., Freitas-Dias, R., Luzes, R., Werneck-De-Castro, J. P. S., Bassini, A., & Cameron, L. (2012). A sportomics strategy to analyze the ability of arginine to modulate both ammonia and lymphocyte levels in blood after high-intensity exercise. Journal of the International Society of Sports Nutrition, 9(1). https://doi.org/10.1186/1550-2783-9-30

Greene, J. M., Feugang, J. M., Pfeiffer, K. E., Stokes, J. V., Bowers, S. D., & Ryan, P. L. (2013). L-arginine enhances cell proliferation and reduces apoptosis in human endometrial RL95-2 cells. Reproductive Biology and Endocrinology, 11(1), 15. https://doi.org/10.1186/1477-7827-11-15

Grimble, G. K. (2007a). Adverse gastrointestinal effects of arginine and related amino acids. Journal of Nutrition, 137(6), 1693S-1701S. https://doi.org/10.1093/jn/137.6.1693s

Grimble, G. K. (2007b). Adverse gastrointestinal effects of arginine and related amino acids. Journal of Nutrition, 137(6), 1693S-1701S. https://doi.org/10.1093/jn/137.6.1693s

Hiratsu, A., Tataka, Y., Namura, S., Nagayama, C., Hamada, Y., & Miyashita, M. (2022). The effects of acute and chronic oral L-arginine supplementation on exercise-induced ammonia accumulation and exercise performance in healthy young men: A randomised, double-blind, cross-over, placebo-controlled trial. Journal of Exercise Science & Fitness, 20(2), 140–147. https://doi.org/10.1016/j.jesf.2022.02.003

Hoseini, A., Dehnou, V. V., Azizi, M., & Alam, M. K. (2015). Effect of High-Intensity Interval Training (HIT) for 4 Weeks with and without L-Arginine Supplementation on the Performance of Women’s Futsal Players. Quarterly of Horizon of Medical Sciences, 21(2), 113–119. https://doi.org/10.18869/acadpub.hms.21.2.113

Hoseini, S. M., Khan, M. A., Yousefi, M., & Costas, B. (2020). Roles of arginine in fish nutrition and health: insights for future researches. Reviews in Aquaculture, 12(4), 2091–2108. https://doi.org/10.1111/raq.12424

Huang, J., Ladeiras, D., Yu, Y., Ming, X., & Yang, Z. (2021). Detrimental effects of chronic L-Arginine rich food on aging kidney. Frontiers in Pharmacology, 11. https://doi.org/10.3389/fphar.2020.582155

Juan, E., De Lucia, M., Beaud, V., Oddo, M., Rusca, M., Viceic, D., Clarke, S., & Rossetti, A. O. (2018). How do you feel? Subjective perception of recovery as a reliable surrogate of cognitive and functional outcome in cardiac arrest survivors. Critical Care Medicine, 46(4), e286–e293. https://doi.org/10.1097/ccm.0000000000002946

Kalman, D., Harvey, P., Ojalvo, S. P., & Komorowski, J. (2016). Randomized prospective Double-Blind studies to evaluate the cognitive effects of Inositol-Stabilized Arginine silicate in healthy physically active adults. Nutrients, 8(11), 736. https://doi.org/10.3390/nu8110736

Kang, K., Shu, X., Zhong, J., & Yu, T. (2014). Effect of L-arginine on immune function: a meta-analysis. PubMed, 23(3), 351–359. https://doi.org/10.6133/apjcn.2014.23.3.09

Kong, X., Tan, B., Yin, Y., Gao, H., Li, X., Jaeger, L. A., Bazer, F. W., & Wu, G. (2011a). l-Arginine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. The Journal of Nutritional Biochemistry, 23(9), 1178–1183. https://doi.org/10.1016/j.jnutbio.2011.06.012

Kong, X., Tan, B., Yin, Y., Gao, H., Li, X., Jaeger, L. A., Bazer, F. W., & Wu, G. (2011b). l-Arginine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. The Journal of Nutritional Biochemistry, 23(9), 1178–1183. https://doi.org/10.1016/j.jnutbio.2011.06.012

Lagaye, S., Derrien, M., Menu, E., Coı̈To, C., Tresoldi, E., MauclèRe, P., Scarlatti, G., Chaouat, G., Barré-Sinoussi, F., & Bomsel, M. (2001). Cell-to-Cell Contact Results in a Selective Translocation of Maternal Human Immunodeficiency Virus Type 1 Quasispecies across a Trophoblastic Barrier by both Transcytosis and Infection. Journal of Virology, 75(10), 4780–4791. https://doi.org/10.1128/jvi.75.10.4780-4791.2001

Líndez, A. M. I., & Reith, W. (2021). Arginine-dependent immune responses. Cellular and Molecular Life Sciences, 78(13), 5303–5324. https://doi.org/10.1007/s00018-021-03828-4

Lloyd, C., King, R., & Moore, L. (2009). Subjective and Objective Indicators of Recovery in Severe Mental Illness: a Cross-Sectional Study. International Journal of Social Psychiatry, 56(3), 220–229. https://doi.org/10.1177/0020764009105703

Lomonosova, Y. N., Shenkman, B. S., Kalamkarov, G. R., Kostrominova, T. Y., & Nemirovskaya, T. L. (2014). L-arginine Supplementation Protects Exercise Performance and Structural Integrity of Muscle Fibers after a Single Bout of Eccentric Exercise in Rats. PLoS ONE, 9(4), e94448. https://doi.org/10.1371/journal.pone.0094448

Morris, S. M. (2002). REGULATION OFENZYMES OF THEUREACYCLE ANDARGININEMETABOLISM. Annual Review of Nutrition, 22(1), 87–105. https://doi.org/10.1146/annurev.nutr.22.110801.140547

Namba, H., Hamada, H., Kimura, T., Sekikawa, K., Kamikawa, N., Ishio-Ueoka, H., Kajiwara, T., Sato, Y. M., Aizawa, F., & Yoshida, T. (2022). Effects of L-arginine on impaired blood fluidity after high-intensity exercise: An in vitro evaluation. Clinical Hemorheology and Microcirculation, 82(1), 1–12. https://doi.org/10.3233/ch-211201

Okon, I. A., Bes, J. A., Udoakag, I. S., Udia, J. P., & Owu, D. U. (2022). L-Arginine oral supplementation reverses hematological and electrolytes imbalances in Adrenaline-Induced myocardial injury in rats. Journal of Medical Sciences(Faisalabad), 22(3), 90–98. https://doi.org/10.3923/jms.2022.90.98

Paulis, L., Matuskova, J., Adamcova, M., Pelouch, V., Simko, J., Krajcirovicova, K., Potacova, A., Hulin, I., Janega, P., Pechanova, O., & Simko, F. (2008). Regression of left ventricular hypertrophy and aortic remodelling in NO‐deficient hypertensive rats: effect of l‐arginine and spironolactone. Acta Physiologica, 194(1), 45–55. https://doi.org/10.1111/j.1748-1716.2008.01862.x

Poeggeler, B., Robenek, H., & Pappolla, M. A. (2021). Editorial: Pharmacology of L-Arginine and L-Arginine-Rich Food. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.743788

Powers, R. W., Chen, L., Russell, P. T., & Larsen, W. J. (1995). Gonadotropin-stimulated regulation of blood-follicle barrier is mediated by nitric oxide. AJP Endocrinology and Metabolism, 269(2), E290–E298. https://doi.org/10.1152/ajpendo.1995.269.2.e290

Pranskunas, A., Pranskuniene, Z., Bernatoniene, J., Vaitkaitiene, E., & Brazaitis, M. (2015). Microcirculatory effects of L-arginine during acute anaerobic exercise in healthy men: A pilot study. Journal of Exercise Science & Fitness, 13(2), 57–62. https://doi.org/10.1016/j.jesf.2015.04.001

Proliferative, anti-apoptotic and immune-enhancing effects of L-arginine in culture of skin fibroblasts. (2017, September 1). PubMed. https://pubmed.ncbi.nlm.nih.gov/28954469/

Ranchordas, M. K., & Whitehead, T. (2011). Effect of acute L-arginine supplementation on 20 km time trial performance in competitive male cyclists. British Journal of Sports Medicine, 45(15), A11.2-A11. https://doi.org/10.1136/bjsports-2011-090606.35

Rezaei, S., Gholamalizadeh, M., Tabrizi, R., Nowrouzi‐Sohrabi, P., Rastgoo, S., & Doaei, S. (2021). The effect of L‐arginine supplementation on maximal oxygen uptake: A systematic review and meta‐analysis. Physiological Reports, 9(3). https://doi.org/10.14814/phy2.14739

Roe, D., Mashiach-Eizenberg, M., & Lysaker, P. H. (2011). The relation between objective and subjective domains of recovery among persons with schizophrenia-related disorders. Schizophrenia Research, 131(1–3), 133–138. https://doi.org/10.1016/j.schres.2011.05.023

Saifaddin, D. L., Mohammed, S. S., Rahim, H. A., Ghanbari, N., Kareem, D. A., Abdollah, H. H., & Omar, S. M. (2023). Endurance training and L-arginine intake: Their effect on antioxidant indices in the heart muscles of rats. Nutrition and Health. https://doi.org/10.1177/02601060231187514

Sakurai, T., Kashimura, O., Kano, Y., Ohno, H., Ji, L. L., Izawa, T., & Best, T. M. (2013). Role of nitric oxide in muscle regeneration following eccentric muscle contractions in rat skeletal muscle. The Journal of Physiological Sciences, 63(4), 263–270. https://doi.org/10.1007/s12576-013-0262-y

Schwedhelm, E., Maas, R., Freese, R., Jung, D., Lukacs, Z., Jambrecina, A., Spickler, W., Schulze, F., & Böger, R. H. (2007). Pharmacokinetic and pharmacodynamic properties of oral L‐citrulline and L‐arginine: impact on nitric oxide metabolism. British Journal of Clinical Pharmacology, 65(1), 51–59. https://doi.org/10.1111/j.1365-2125.2007.02990.x

Shao, A., & Hathcock, J. N. (2008). Risk assessment for the amino acids taurine, l-glutamine and l-arginine. Regulatory Toxicology and Pharmacology, 50(3), 376–399. https://doi.org/10.1016/j.yrtph.2008.01.004

Shashar, M., Hod, T., Chernichovski, T., Angel, A., Kazan, S., Grupper, A., Naveh, S., Bassat, O. K., Weinstein, T., & Schwartz, I. F. (2018). Mineralocorticoid receptor blockade improves arginine transport and nitric oxide generation through modulation of cationic amino acid transporter-1 in endothelial cells. Nitric Oxide, 80, 24–31. https://doi.org/10.1016/j.niox.2018.07.007

Shen, S., & Hua, C. (2010). Effect ofL-arginine on the expression of Bcl-2 and Bax in the placenta of fetal growth restriction. The Journal of Maternal-Fetal & Neonatal Medicine, 24(6), 822–826. https://doi.org/10.3109/14767058.2010.531315

Šimko, F., Potáčová, A., Pelouch, V., Paulis, L., Matuskova, J., Krajčirovičová, K., Pecháňová, O., & Adamcová, M. (2007). Spontaneous, L-Arginine-Induced and Spironolactone-Induced regression of protein remodeling of the left ventricle in L-NAME-Induced hypertension. Physiological Research, S55–S62. https://doi.org/10.33549/physiolres.931398

Speer, H., D’Cunha, N. M., Davies, M. J., McKune, A. J., & Naumovski, N. (2020). The physiological effects of amino acids arginine and citrulline: Is there a basis for development of a beverage to promote endurance performance? A narrative review of orally administered supplements. Beverages, 6(1), 11. https://doi.org/10.3390/beverages6010011

Šušnjara, P., Mihaljević, Z., Stupin, A., Kolobarić, N., Matić, A., Jukić, I., Kralik, Z., Kralik, G., Miloloža, A., Pavošević, T., Šerić, V., Lončarić, Z., Kerovec, D., Galović, O., & Drenjančević, I. (2023). Consumption of nutritionally enriched hen eggs enhances Endothelium-Dependent vasodilation via cyclooxygenase metabolites in healthy young People—A randomized study. Nutrients, 15(7), 1599. https://doi.org/10.3390/nu15071599

Tan, B. (2015). L-Arginine improves DNA synthesis in LPS-challenged enterocytes. Frontiers in Bioscience, 20(6), 989–1003. https://doi.org/10.2741/4352

Tripathi, P., Chandra, M., & Misra, M. K. (2009). Oral administration of L‐Arginine in patients with angina or following myocardial infarction may be protective by increasing plasma superoxide dismutase and total thiols with reduction in serum cholesterol and xanthine oxidase. Oxidative Medicine and Cellular Longevity, 2(4), 231–237. https://doi.org/10.4161/oxim.2.4.9233

Trofimova, E. S., Zykova, M. V., Danilets, M. G., Ligacheva, A. A., Sherstoboev, E. Y., Selivanova, N. S., Azarkina, L. A., Zhirkova, A. M., Zhang, Y., Perminova, I. V., Zhdanov, V. V., & Belousov, M. V. (2024). Effect of modified forms of sodium humate POWHUMUS on the balance of arginine in peritoneal macrophages of intact mice. Bulletin of Experimental Biology and Medicine, 177(1), 68–73. https://doi.org/10.1007/s10517-024-06133-9

Viribay, A., Burgos, J., Fernández-Landa, J., Seco-Calvo, J., & Mielgo-Ayuso, J. (2020a). Effects of arginine Supplementation on Athletic Performance Based on Energy Metabolism: A Systematic Review and Meta-Analysis. Nutrients, 12(5), 1300. https://doi.org/10.3390/nu12051300

Viribay, A., Burgos, J., Fernández-Landa, J., Seco-Calvo, J., & Mielgo-Ayuso, J. (2020b). Effects of arginine Supplementation on Athletic Performance Based on Energy Metabolism: A Systematic Review and Meta-Analysis. Nutrients, 12(5), 1300. https://doi.org/10.3390/nu12051300

Viribay, A., Burgos, J., Fernández-Landa, J., Seco-Calvo, J., & Mielgo-Ayuso, J. (2020c). Effects of arginine Supplementation on Athletic Performance Based on Energy Metabolism: A Systematic Review and Meta-Analysis. Nutrients, 12(5), 1300. https://doi.org/10.3390/nu12051300

Wang, R., Jiao, H., Zhao, J., Wang, X., & Lin, H. (2018a). L-Arginine enhances protein synthesis by phosphorylating MTOR (THR 2446) in a nitric Oxide-Dependent manner in C2C12 cells. Oxidative Medicine and Cellular Longevity, 2018, 1–13. https://doi.org/10.1155/2018/7569127

Wang, R., Jiao, H., Zhao, J., Wang, X., & Lin, H. (2018b). L-Arginine enhances protein synthesis by phosphorylating MTOR (THR 2446) in a nitric Oxide-Dependent manner in C2C12 cells. Oxidative Medicine and Cellular Longevity, 2018, 1–13. https://doi.org/10.1155/2018/7569127

Willoughby, D. S. (2015). INTRACELLULAR MECHANISTIC ROLE OF NITRIC OXIDE: A COMPARATIVE ANALYSIS OF THE EFFECTIVENESS OF L-ARGININE AND L-CITRULLINE SUPPLEMENTATION ON NITRIC OXIDE SYNTHESIS AND SUBSEQUENT EXERCISE PERFORMANCE IN HUMANS. International Journal of Food and Nutritional Science, 2(1), 1–8. https://doi.org/10.15436/2377-0619.15.010

Wu, G., Bazer, F. W., Davis, T. A., Kim, S. W., Li, P., Rhoads, J. M., Satterfield, M. C., Smith, S. B., Spencer, T. E., & Yin, Y. (2008). Arginine metabolism and nutrition in growth, health and disease. Amino Acids, 37(1), 153–168. https://doi.org/10.1007/s00726-008-0210-y

Wu, G., Meininger, C. J., McNeal, C. J., Bazer, F. W., & Rhoads, J. M. (2021). Role of L-Arginine in nitric oxide synthesis and health in humans. In Advances in experimental medicine and biology (pp. 167–187). https://doi.org/10.1007/978-3-030-74180-8_10

Wu, G., & Morris, S. M. (1998). Arginine metabolism: nitric oxide and beyond. Biochemical Journal, 336(1), 1–17. https://doi.org/10.1042/bj3360001

Yaman, H., Sönmez, G. T., & Gürel, K. (2010). Effects of oral L-arginine supplementation on vasodilation and O2max in male soccer players. Biomedical Human Kinetics, 2(2010), 25–29. https://doi.org/10.2478/v10101-010-0006-x

Yuan, C., Ding, Y., He, Q., Azzam, M., Lu, J., & Zou, X. (2015). L-arginine upregulates the gene expression of target of rapamycin signaling pathway and stimulates protein synthesis in chicken intestinal epithelial cells. Poultry Science, 94(5), 1043–1051. https://doi.org/10.3382/ps/pev051

Zheng, X., Liu, T., Chen, X., Chen, X., Jiang, J., & Hu, P. (2015). Investigation of a potential pharmacokinetic interaction between perindopril arginine and amlodipine when administered as a single perindopril/amlodipine fixed-dose combination tablet in healthy Chinese male volunteers. International Journal of Clinical Pharmacology and Therapeutics, 54(01), 43–51. https://doi.org/10.5414/cp202250

Zhou, Y., Liu, G., Huang, H., & Wu, J. (2021). Advances and impact of arginine-based materials in wound healing. Journal of Materials Chemistry B, 9(34), 6738–6750. https://doi.org/10.1039/d1tb00958c

Downloads

  • PDF

Published

2024-11-17

How to Cite

1.
KAROŃ, Łukasz, ZYGMUNT, Anna Ewa, KAROŃ, Karolina, GRABOWSKI, Wojciech, DRAPAŁA, Grzegorz, PEDRYCZ, Emilia and PEDRYCZ, Daria. L-arginine Supplementation in Endurance Athletes: A Systematic Review of Recovery Mechanisms and Performance Enhancement. Quality in Sport. Online. 17 November 2024. Vol. 33, p. 55867. [Accessed 21 May 2025]. DOI 10.12775/QS.2024.33.55867.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 33 (2024)

Section

Medical Sciences

License

Copyright (c) 2024 Łukasz Karoń, Anna Ewa Zygmunt, Karolina Karoń, Wojciech Grabowski, Grzegorz Drapała, Emilia Pedrycz, Daria Pedrycz

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats

Number of views and downloads: 494
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

L-arginine, endurance sports, nitric oxide, muscle recovery, athletic performance, dietary supplementation
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop