Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Quality in Sport

Research on sit-up counting method and system based on human skeleton key point detection
  • Home
  • /
  • Research on sit-up counting method and system based on human skeleton key point detection
  1. Home /
  2. Archives /
  3. Vol. 24 (2024) /
  4. Physical Culture Sciences

Research on sit-up counting method and system based on human skeleton key point detection

Authors

  • Zhiming Shi College of Artificial Intelligence, Southwest University, Chongqing, China, 400715. National & Local Joint Engineering Research Center of Intelligent Transmission and Control Technology, Chongqing, China, 400715 https://orcid.org/0009-0000-1671-1657
  • Zang Zhao College of Artificial Intelligence, Southwest University, Chongqing, China, 400715. National & Local Joint Engineering Research Center of Intelligent Transmission and Control Technology, Chongqing, China, 400715 https://orcid.org/0009-0009-3715-5026
  • Junjie Chen College of Artificial Intelligence, Southwest University, Chongqing, China, 400715. National & Local Joint Engineering Research Center of Intelligent Transmission and Control Technology, Chongqing, China, 400715 https://orcid.org/0009-0006-9646-3625
  • Guangxin Cheng School of Physical Education, Southwest University, Chongqing, China, 400715 https://orcid.org/0009-0003-9376-1000

DOI:

https://doi.org/10.12775/QS.2024.24.55408

Keywords

sit-ups, skeletal key points, convolutional neural networks, counting system, sport

Abstract

This paper proposes a sit-up counting system based on bone key point detection, aiming to solve the subjectivity and inefficiency problems of traditional manual counting. The system uses deep learning algorithms to detect and identify key points of human bones, and by improving the network structure and introducing jump connections, it significantly improves the accuracy and efficiency of positioning key points of bones. The number of improved network parameters was reduced from 125.6M to 38.3M, significantly reducing model complexity; at the same time, the processing speed was increased from 36.5 FPS to 63.6 FPS, showing higher processing efficiency. Combining skeletal key point tracking and illegal motion detection, real-time and accurate counting is achieved, and the accuracy of sit-up detection reaches 98.57%. The system integrates real-time detection, data collection, display, storage and query functions, providing an efficient and objective counting solution for sports and testing.

References

Li Chaoyang, Zhang Xinping. Discussion on optimization of sit-up test item in the

National Student Physical Fitness Standards[J]. Curriculum Teaching Research, 2016, (12): 68-72. https://doi.org/10.3969/j.issn.2095-2791.2016.12.016.

Bin-Bin H, Li-Qian H, Wen-Bo S H U, et al. Influence of fat and muscle on sit-ups in

female college students[J]. Acta Anatomica Sinica, 2021, 52(5): 822. https://doi.org/10.16098/j.issn.0529-1356.2021.05.023.

Lemes V B, Brand C. Disclosing core strength: reliability and correlations before and

after COVID-19 pandemic in plank and sit-ups tests[J]. Sport Sciences for Health, 2024, 20(1): 249-257. https://doi.org/10.1007/s11332-023-01136-x.

Dr. Rohit A Tambe. Establishment of norms for sit ups test of higher secondary

students of Maharashtra state. Int J Phys Educ Sports Health 2022;9(4):27-30.

Hua Zhiyuan, Wang Yizhi, Li Quanbin. Design of portable intelligent sit-up

counter[J]. Internet of Things Technology, 2024, 14(01): 73-76. https://doi.org/10.16667/j.issn.2095-1302.2024.01.020.

Liu Yile, Tu Yaqing. Key point detection and monitoring method for pull-ups in video

images[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2022, 34(06): 995-1004. https://doi.org/10.3979/j.issn.1673-825X.202204300098.

Wang Cheng. Design and implementation of pull-up intelligent counting system

based on human skeleton key point detection[D]. Nanjing University of Posts and Telecommunications, 2021. https://doi.org/ 10.27251/d.cnki.gnjdc.2021.001106.

Bao Ziqun. Improving sit-up test counting for target detection networks[J]. Intelligent

Computers and Applications, 2022, 12(08): 102-105+109.

Wen Qian. Research and implementation of human posture estimation system based

on convolutional neural network[D]. Xidian University, 2019. https://doi.org/ 10.27389/d.cnki.gxadu.2019.002472.

Yan Xiaobo, Pan Feng, Zhang Yansha, et al. Pull-up intelligent detection technology

based on image vision[J]. Industrial Control Computer, 2023, 36(06): 46-47+49.

Jing Qian, Tao Qingchuan. Sit-up counting algorithm based on computer vision[J].

Modern Computer, 2023, 29(07): 69-72.

Zhang Yuxin. Design and implementation of pull-up test system[J]. Electronic Test,

, (21): 24-25.

Liu Shidong. Common problems and solutions in the test of physical education

middle school entrance examination instruments: taking pull-ups and sit-ups as examples [J]. Physical Education, 2022, 42(06): 81.

Yue Liying. Design and implementation of human behavior recognition system

based on posture estimation and graph convolutional neural network[D]. Shihezi University, 2023. https://doi.org/ 10.27332/d.cnki.gshzu.2023.000587.

Rätsch G, Onoda T, Müller K R. Soft margins for AdaBoost[J]. Machine learning,

, 42: 287-320. https://doi.org/10.1023/A:1007618119488.

Papandreou G, Zhu T, Chen L C, et al. Personlab: Person pose estimation and

instance segmentation with a bottom-up, part-based, geometric embedding model[C].Proceedings of the European conference on computer vision (ECCV). 2018: 269-286. https://doi.org/10.1007/978-3-030-01264-9_17.

Lv X, Ta N, Chen T, et al. Analysis of gait characteristics of patients with knee

arthritis based on human posture estimation[J]. BioMed research international, 2022, 2022. https://doi.org/10.1155/2022/7020804.

Chen Y, Wang Z, Peng Y, et al. Cascaded pyramid network for multi-person pose

estimation[C].Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7103-7112. https://doi.org/10.1109/CVPR.2018.00742.

Zhang Lijie, Li Xiuting. Research and development of campus smart sports

equipment-design of intelligent sit-up counter[J]. China Modern Educational Equipment, 2022, (10): 37-39. https://doi.org/10.13492/j.cnki.cmee.2022.10.010.

Zhu Z, Gao X, Shi Y, et al. Standardized detection and counting of sit-ups based on

CenterNet[C]. AIIPCC 2022; The Third International Conference on Artificial Intelligence, Information Processing and Cloud Computing. VDE, 2022: 1-7.

Zhao W D, Zhang Q Q, Xue Q, et al. Lightweight sit-ups recognition and counting

method based on openpose[C].2022 4th International Conference on Frontiers Technology of Information and Computer (ICFTIC). IEEE, 2022: 681-685.

Hutahaean A D. Evaluation of the performance of five pre-trained deep learning

networks for automatic counting of sit-ups in Indonesia civil servant technical tests. Masters thesis, Universitas Pelita Harapan[D]. Universitas Pelita Harapan, 2023.

Anders C, Ludwig F, Sänger F, et al. Eight Weeks Sit-Up versus Isometric

Abdominal Training: Effects on Abdominal Muscles Strength Capacity[J]. Arch Sports Med, 2020, 4(1): 198-204. https://doi.org/10.36959/987/252.

Rifki M S, Farma F, Komaini A, et al. Development of Sit Up Measuring Tools

Based on Arduino and Ultrasonic Sensors With Android Applications[J]. Int. J. Interact.Mob.Technol,2022,16(8):182-189.https://doi.org/10.3991/ijim.v16i08.30673.

Griban G, Yahupov V, Svystun V, et al. Dynamics of the students’ physical fitness

while studying at higher educational institutions[J]. International Journal of Applied Exercise Physiology, 2020 (9 (9)): 147-156.

Mardela R, Irawan R, Laksana A A N P, et al. Development of a Digital-Based Push

Up and Sit Up Test Counter[J]. Halaman Olahraga Nusantara: Jurnal Ilmu Keolahragaan, 2023, 6(1): 287-298. https://doi.org/10.31851/hon.v6i1.10723.

Wang H, Chen G, Yang F, et al. The Design and Simulation of Sit-Up Counter Based

on MCU[C]. Advancements in Mechatronics and Intelligent Robotics: Proceedings of ICMIR 2020. Springer Singapore, 2021: 459-464. https://doi.org/10.1007/978-981-16-1843-7_53.

Jang S Y, So W Y, Jeong T. Intelligent system of training data sets for current

reported normality levels and physical fitness analysis[J]. Science & Sports, 2021, 36(4): 310. e1-310. e6. https://doi.org/10.1016/j.scispo.2020.10.001.

Downloads

  • PDF

Published

2024-10-11

How to Cite

1.
SHI, Zhiming, ZHAO, Zang, CHEN, Junjie and CHENG, Guangxin. Research on sit-up counting method and system based on human skeleton key point detection. Quality in Sport. Online. 11 October 2024. Vol. 24, p. 55408. [Accessed 28 June 2025]. DOI 10.12775/QS.2024.24.55408.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 24 (2024)

Section

Physical Culture Sciences

License

Copyright (c) 2024 Zhiming Shi, Zang Zhao, Junjie Chen, Guangxin Cheng

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats

Number of views and downloads: 232
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

sit-ups, skeletal key points, convolutional neural networks, counting system, sport
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop