Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Quality in Sport

The Impact of Intermittent Fasting on Alzheimer's Disease Risk: A Literature Review
  • Home
  • /
  • The Impact of Intermittent Fasting on Alzheimer's Disease Risk: A Literature Review
  1. Home /
  2. Archives /
  3. Vol. 23 (2024) /
  4. Medical Sciences

The Impact of Intermittent Fasting on Alzheimer's Disease Risk: A Literature Review

Authors

  • Nicola Joanna Stencel The T. Marciniak Lower Silesian Specialist Hospital - Center of Emergency Medicine, Wroclaw, Gen. Augusta Emila Fieldorfa 2, 54-049, Wroclaw, Poland https://orcid.org/0009-0004-2637-4155
  • Jakub Szczot The T. Marciniak Lower Silesian Specialist Hospital - Center of Emergency Medicine, Wroclaw, Gen. Augusta Emila Fieldorfa 2, 54-049, Wroclaw, Poland https://orcid.org/0009-0003-6862-5162
  • Magdalena Krala-Szkaradowska Dr Karol Jonscher Municipal Medical Centre of Lodz, Milionowa 14, 93-113, Lodz, Poland https://orcid.org/0009-0006-0983-1515
  • Katarzyna Oktawia Skrzypczak Independent Public Clinical Hospital No. 1 of the Pomeranian Medical University in Szczecin, Siedlecka 2, 72-010 Szczecin, Poland https://orcid.org/0009-0009-8663-4875
  • Sebastian Krzysztof Stuczyński Multispecialist Regional Hospital in Gorzow Wlkp. Limited Liability Company, Dekerta 1, 66-400, Gorzów Wielkopolski, Poland https://orcid.org/0009-0006-5067-198X

DOI:

https://doi.org/10.12775/QS.2024.23.55272

Keywords

Alzheimer’s disease, dementia, intermittent fasting, ketone bodies, cognition

Abstract

Introduction and purpose: In the face of an aging population, the increasing number of elderly individuals raises the incidence of age-related conditions, including Alzheimer's disease (AD), which is a leading cause of global disability and a significant burden on society. The lack of effective treatments for AD underscores the importance of prevention. Recent reports suggest that intermittent fasting (IF) may counteract the disease processes associated with AD and serve as a potential preventive strategy. This review aims to outline the impact of IF on the risk of developing Alzheimer's disease.
Materials and methods: A literature search was conducted using the medical databases PubMed and Google Scholar. Articles were retrieved in English, employing the keywords: “Alzheimer’s disease”, “dementia”, “intermittent fasting”, “ketone bodies”, “cognition”.
State  of  knowledge: IF is a dietary regimen involving cyclic restriction of food intake, practiced in many cultures and religions. The interest in IF has increased due to its numerous health benefits, and recent studies indicate its potential in delaying and preventing pathological processes associated with AD, such as β-amyloid accumulation, neuroinflammation, and vascular damage, making IF a potentially protective intervention against neurodegeneration.
Summary: IF is a promising strategy for improving cognitive function and brain health. Due to the limited number of studies conducted on humans, further research is needed to confirm its effectiveness in preventing AD.

References

Twarowski B, Herbet M. Inflammatory Processes in Alzheimer’s Disease-Pathomechanism, Diagnosis and Treatment: A Review. Int J Mol Sci. 2023;24(7):6518. https://doi.org/10.3390/ijms24076518

Chu CQ, Yu LL, Qi GY, et al. Can dietary patterns prevent cognitive impairment and reduce Alzheimer’s disease risk: Exploring the underlying mechanisms of effects. Neurosci Biobehav Rev. 2022;135:104556. https://doi.org/10.1016/j.neubiorev.2022.104556

Seals DR, Justice JN, LaRocca TJ. Physiological geroscience: targeting function to increase healthspan and achieve optimal longevity. J Physiol. 2016;594(8):2001–2024. https://doi.org/10.1113/jphysiol.2014.282665

Tseng PT, Zeng BS, Suen MW, et al. Efficacy and acceptability of anti-inflammatory eicosapentaenoic acid for cognitive function in Alzheimer’s dementia: A network meta-analysis of randomized, placebo-controlled trials with omega-3 fatty acids and FDA-approved pharmacotherapy. Brain Behav Immun. 2023;111:352–364. https://doi.org/10.1016/j.bbi.2023.04.017

Rostagno AA. Pathogenesis of Alzheimer’s Disease. Int J Mol Sci. 2022;24:107. https://doi.org/10.3390/ijms24010107

Lee H, Kim K, Lee YC, et al. Associations between vascular risk factors and subsequent Alzheimer’s disease in older adults. Alzheimers Res Ther. 2020;12(1):117. https://doi.org/10.1186/s13195-020-00690-7

Mattson MP, Longo VD, Harvie M. Impact of intermittent fasting on health and disease processes. Ageing Res Rev. 2017;39:46–58. https://doi.org/10.1016/j.arr.2016.10.005

Arora S, Santiago JA, Bernstein M, et al. Diet and lifestyle impact the development and progression of Alzheimer’s dementia. Front Nutr. 2023;10:1213223. https://doi.org/10.3389/fnut.2023.1213223

Weller J, Budson A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Res. 2018;7:1000-1161. https://doi.org/10.12688/f1000research

Śliwińska S, Jeziorek M. The role of nutrition in Alzheimer’s disease. Rocz Panstw Zakl Hig. 2021;72(1):29–39. https://doi.org/10.32394/rpzh.2021.0154

Piekut T, Hurła M, Banaszek N, et al. Infectious agents and Alzheimer’s disease. J Integr Neurosci. 2022;21(2):73. https://doi.org/10.31083/j.jin2102073

Tahami Monfared AA, Byrnes MJ, White LA, et al. Alzheimer’s Disease: Epidemiology and Clinical Progression. Neurol Ther. 2022;11(2):553–569. https://doi.org/10.1007/s40120-022-00338-8

Aliev G, Ashraf GM, Tarasov VV, et al. Alzheimer’s Disease - Future Therapy Based on Dendrimers. Curr Neuropharmacol. 2019;17(3):288–294. https://doi.org/10.2174/1570159X16666180918164623

Khan S, Barve KH, Kumar MS. Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer’s Disease. Curr Neuropharmacol. 2020;18(11):1106–1125. https://doi.org/10.2174/1570159X18666200528142429

Błaszczyk JW. Pathogenesis of Dementia. Int J Mol Sci. 2022;24(1):543. https://doi.org/10.3390/ijms24010543

Versele R, Corsi M, Fuso A, et al. Ketone Bodies Promote Amyloid-β1-40 Clearance in a Human in Vitro Blood–Brain Barrier Model. Int J Mol Sci. 2020;21(3):934. https://doi.org/10.3390/ijms21030934

Cortes-Canteli M, Iadecola C. Alzheimer’s Disease and Vascular Aging: JACC Focus Seminar. J Am Coll Cardiol. 2020;75(8):942–951. https://doi.org/10.1016/j.jacc.2019.10.062

Elias A, Padinjakara N, Lautenschlager NT. Effects of intermittent fasting on cognitive health and Alzheimer’s disease. Nutr Rev. 2023;81(9):1225–1233. https://doi.org/10.1093/nutrit/nuad021

2024 Alzheimer’s disease facts and figures. Alzheimers Dement. 2024;20(5):3708–3821. https://doi.org/10.1002/alz.13809

Lucey BP. It’s complicated: The relationship between sleep and Alzheimer’s disease in humans. Neurobiol Dis. 2020;144:105031. https://doi.org/10.1016/j.nbd.2020.105031

Elonheimo HM, Andersen HR, Katsonouri A, et al. Environmental Substances Associated with Alzheimer’s Disease - A Scoping Review. Int J Environ Res Public Health. 2021; 18(22):11839. https://doi.org/10.3390/ijerph182211839

Serrano-Pozo A, Growdon JH. Is Alzheimer’s Disease Risk Modifiable? J Alzheimers Dis. 2019;67(3):795–819. https://doi.org/10.3233/JAD181028

Breijyeh Z, Karaman R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules. 2020;25(24):5789. https://doi.org/10.3390/molecules25245789

Grabrucker S, Marizzoni M, Silajdžić E, et al. Microbiota from Alzheimer’s patients induce deficits in cognition and hippocampal neurogenesis. Brain. 2023;146(12): 4916–4934. https://doi.org/10.1093/brain/awad303

Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease. Lancet. 2021;397(10284):1577–1590. https://doi.org/10.1016/S0140-6736(20)32205-4

Gudden J, Arias Vasquez A, Bloemendaal M. The Effects of Intermittent Fasting on Brain and Cognitive Function. Nutrients. 2021;13(9):3166. https://doi.org/10.3390/nu13093166

Lobo F, Haase J, Brandhorst S. The Effects of Dietary Interventions on Brain Aging and Neurological Diseases. Nutrients. 2022;14(23):5086. https://doi.org/10.3390/nu14235086

Tsitsou S, Zacharodimos N, Poulia K-A, et al. Effects of Time-Restricted Feeding and Ramadan Fasting on Body Weight, Body Composition, Glucose Responses, and Insulin Resistance: A Systematic Review of Randomized Controlled Trials. Nutrients. 2022;14(22):4778. https://doi.org/10.3390/nu14224778

Longo VD, Di Tano M, Mattson MP, et al. Intermittent and periodic fasting, longevity and disease. Nat Aging. 2021;1(1):47–59. https://doi.org/10.1038/s43587-020-00013-3

Crittenden AN, Schnorr SL. Current views on hunter‐gatherer nutrition and the evolution of the human diet. Am J Phys Anthropol. 2017;162(63):84–109. https://doi.org/10.1002/ajpa.23148

Longo VD, Mattson MP. Fasting: Molecular Mechanisms and Clinical Applications. Cell Metab. 2014;19(2):181–192. https://doi.org/10.1016/j.cmet.2013.12.008

Anton SD, Moehl K, Donahoo WT, et al. Flipping the Metabolic Switch: Understanding and Applying the Health Benefits of Fasting. Obesity. 2018;26(2):254–268. https://doi.org/10.1002/oby.22065

Mattson MP, Moehl K, Ghena N, et al. Intermittent metabolic switching, neuroplasticity and brain health. Nat Rev Neurosci. 2018;19(2):63-80. https://doi.org/10.1038/nrn.2017.156

Cunnane SC, Courchesne‐Loyer A, St‐Pierre V, et al. Can ketones compensate for deteriorating brain glucose uptake during aging? Implications for the risk and treatment of Alzheimer’s disease. Ann N Y Acad Sci. 2016;1367(1):12–20. https://doi.org/10.1111/nyas.12999

Wilhelmi de Toledo F, Grundler F, Sirtori CR, et al. Unravelling the health effects of fasting: a long road from obesity treatment to healthy life span increase and improved cognition. Ann Med. 2020;52(5):147–161. https://doi.org/10.1080/07853890.2020.1770849

Michalik Anna, Jarzyna Robert. The key role of AMP-activated protein kinase (AMPK) in aging process. Postępy Biochem. 2016;62(4):459–471. PMID: 28132448

Jamshed H, Beyl R, Della Manna D, et al. Early Time-Restricted Feeding Improves 24-Hour Glucose Levels and Affects Markers of the Circadian Clock, Aging, and Autophagy in Humans. Nutrients. 2019;11(6):1234. https://doi.org/10.3390/nu11061234

Warren JL, MacIver NJ. Regulation of Adaptive Immune Cells by Sirtuins. Front Endocrinol (Lausanne). 2019;10:466. doi: 10.3389/fendo.2019.00466

Malinowski B, Zalewska K, Węsierska A, et al. Intermittent Fasting in Cardiovascular Disorders-An Overview. Nutrients. 2019;11(3):673. https://doi.org/10.3390/nu11030673

Dong TA, Sandesara PB, Dhindsa DS, et al. Intermittent Fasting: A Heart Healthy Dietary Pattern? Am J Med. 2020;133(8):901–907. https://doi.org/10.1016/j.amjmed.2020.03.030

Ooi TC, Meramat A, Rajab NF, et al. Intermittent Fasting Enhanced the Cognitive Function in Older Adults with Mild Cognitive Impairment by Inducing Biochemical and Metabolic changes: A 3-Year Progressive Study. Nutrients. 2020;12(9):2644. https://doi.org/10.3390/nu12092644

Mindikoglu AL, Abdulsada MM, Jain A, et al. Intermittent fasting from dawn to sunset for 30 consecutive days is associated with anticancer proteomic signature and upregulates key regulatory proteins of glucose and lipid metabolism, circadian clock, DNA repair, cytoskeleton remodeling, immune system and cognitive function in healthy subjects. J Proteomics. 2020;217:103645. https://doi.org/10.1016/j.jprot.2020.103645

Urdánoz-Casado A, Sánchez-Ruiz de Gordoa J, Robles M, et al. Gender-Dependent Deregulation of Linear and Circular RNA Variants of HOMER1 in the Entorhinal Cortex of Alzheimer’s Disease. Int J Mol Sci. 2021;22(17):9205. https://doi.org/10.3390/ijms22179205

Visconte C, Canino J, Guidetti GF, et al. Amyloid precursor protein is required for in vitro platelet adhesion to amyloid peptides and potentiation of thrombus formation. Cell Signal. 2018;52:95–102. https://doi.org/10.1016/j.cellsig.2018.08.017

Witte AV, Fobker M, Gellner R, et al. Caloric restriction improves memory in elderly humans. Proc Natl Acad Sci U S A. 2009;106(4):1255–1260. https://doi.org/10.1073/pnas.0808587106

Leclerc E, Trevizol AP, Grigolon RB, et al. The effect of caloric restriction on working memory in healthy non-obese adults. CNS Spectr. 2020;25(1):2–8. https://doi.org/10.1017/S1092852918001566

Reger MA, Henderson ST, Hale C, et al. Effects of β-hydroxybutyrate on cognition in memory-impaired adults. Neurobiol Aging. 2004; 25(3):311–314. https://doi.org/10.1016/S0197-4580(03)00087-3

Liu Y, Cheng A, Li Y-J, et al. SIRT3 mediates hippocampal synaptic adaptations to intermittent fasting and ameliorates deficits in APP mutant mice. Nat Commun. 2019;10:1886. https://doi.org/10.1038/s41467-019-09897-1

Singh R, Lakhanpal D, Kumar S, et al. Late-onset intermittent fasting dietary restriction as a potential intervention to retard age-associated brain function impairments in male rats. Age (Dordr). 2012;34(4):917–933. https://doi.org/10.1007/s11357-011-9289-2

Singh R, Manchanda S, Kaur T, et al. Middle age onset short-term intermittent fasting dietary restriction prevents brain function impairments in male Wistar rats. Biogerontology. 2015;16(6):775–788. https://doi.org/10.1007/s10522-015-9603-y

Talani G, Licheri V, Biggio F, et al. Enhanced Glutamatergic Synaptic Plasticity in the Hippocampal CA1 Field of Food-Restricted Rats: Involvement of CB1 Receptors. Neuropsychopharmacology. 2016;41(5):1308–1318. https://doi.org/10.1038/npp.2015.280

Brandhorst S, Choi IY, Wei M, et al. A Periodic Diet that Mimics Fasting Promotes Multi-System Regeneration, Enhanced Cognitive Performance, and Healthspan. Cell Metab. 2015;22(1):86–99. https://doi.org/10.1016/j.cmet.2015.05.012

Li L, Wang Z, Zuo Z. Chronic Intermittent Fasting Improves Cognitive Functions and Brain Structures in Mice. PLoS One. 2013;8(6):e66069. https://doi.org/10.1371/journal.pone.0066069

Zhang J, Zhan Z, Li X, et al. Intermittent Fasting Protects against Alzheimer’s Disease Possible through Restoring Aquaporin-4 Polarity. Front Mol Neurosci. 2017;10:395. https://doi.org/10.3389/fnmol.2017.00395

Kashiwaya Y, Bergman C, Lee J-H, et al. A ketone ester diet exhibits anxiolytic and cognition-sparing properties, and lessens amyloid and tau pathologies in a mouse model of Alzheimer’s disease. Neurobiol Aging. 2013;34(6):1530–1539. https://doi.org/10.1016/j.neurobiolaging.2012.11.023

Yin JX, Maalouf M, Han P, et al. Ketones block amyloid entry and improve cognition in an Alzheimer’s model. Neurobiol Aging. 2016;39:25–37. https://doi.org/10.1016/j.neurobiolaging.2015.11.018

Wu Y, Gong Y, Luan Y, et al. BHBA treatment improves cognitive function by targeting pleiotropic mechanisms in transgenic mouse model of Alzheimer’s disease. FASEB J. 2020;34(1):1412–1429. https://doi.org/10.1096/fj.201901984R

Xie G, Tian W, Wei T, et al. The neuroprotective effects of β-hydroxybutyrate on Aβ-injected rat hippocampus in vivo and in Aβ-treated PC-12 cells in vitro. Free Radic Res. 2015;49(2):139–150. https://doi.org/10.3109/10715762.2014.987274

Halagappa VK, Guo Z, Pearson M, et al. Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer’s disease. Neurobiol Dis. 2007;26(1):212–220. https://doi.org/10.1016/j.nbd.2006.12.019

Esmaeilzadeh F, van de Borne P. Does Intermittent Fasting Improve Microvascular Endothelial Function in Healthy Middle-aged Subjects? Biol Med. 2016;8(6):337 https://doi.org/10.4172/0974-8369.1000337.

Sun J, Zhang T, Zhang L, et al. Fasting Therapy Contributes to the Improvement of Endothelial Function and Decline in Vascular Injury-Related Markers in Overweight and Obese Individuals via Activating Autophagy of Endothelial Progenitor Cells. Evid Based Complement Alternat Med. 2020;2020:3576030. https://doi.org/10.1155/2020/3576030

Yousefi B, Faghfoori Z, Samadi N, et al. The effects of Ramadan fasting on endothelial function in patients with cardiovascular diseases. Eur J Clin Nutr. 2014;68(7):835–839. https://doi.org/10.1038/ejcn.2014.61

Xin B, Liu CL, Yang H, et al. Prolonged Fasting Improves Endothelial Progenitor Cell-Mediated Ischemic Angiogenesis in Mice. Cell Physiol Biochem. 2016;40(3-4):693–706. https://doi.org/10.1159/000452581

Jordan S, Tung N, Casanova-Acebes M, et al. Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell. 2019;178(5):1102-1114.e17. https://doi.org/10.1016/j.cell.2019.07.050

Longo VD, Cortellino S. Fasting, dietary restriction, and immunosenescence. J Allergy Clin Immunol. 2020;146(5):1002–1004. https://doi.org/10.1016/j.jaci.2020.07.035

Faris MA, Kacimi S, Al-Kurd RA, et al. Intermittent fasting during Ramadan attenuates proinflammatory cytokines and immune cells in healthy subjects. Nutr Res. 2012;32(12):947–955. https://doi.org/10.1016/j.nutres.2012.06.021

Willette AA, Bendlin BB, McLaren DG, et al. Age-related changes in neural volume and microstructure associated with interleukin-6 are ameliorated by a calorie-restricted diet in old rhesus monkeys. Neuroimage. 2010;51(3):987–994. https://doi.org/10.1016/j.neuroimage.2010.03.015

Lazic D, Tesic V, Jovanovic M, et al. Every-other-day feeding exacerbates inflammation and neuronal deficits in 5XFAD mouse model of Alzheimer’s disease. Neurobiol Dis. 2020;136:104745. https://doi.org/10.1016/j.nbd.2020.104745

Cheng A, Wan R, Yang J-L, et al. Involvement of PGC-1α in the formation and maintenance of neuronal dendritic spines. Nat Commun. 2012;3:1250. https://doi.org/10.1038/ncomms2238

Cheng A, Yang Y, Zhou Y, et al. Mitochondrial SIRT3 Mediates Adaptive Responses of Neurons to Exercise and Metabolic and Excitatory Challenges. Cell Metab. 2016;23(1):128–142. https://doi.org/10.1016/j.cmet.2015.10.013

Domaszewski P, Konieczny M, Pakosz P, et al. Effect of a Six-Week Intermittent Fasting Intervention Program on the Composition of the Human Body in Women over 60 Years of Age. Int J Environ Res Public Health. 2020;17(11):4138. https://doi.org/10.3390/ijerph17114138

Welton S, Minty R, O’Driscoll T, et al. Intermittent fasting and weight loss: Systematic review. Can Fam Physician. 2020;66(2):117–125. PMID: 32060194

Tinsley GM, Forsse JS, Butler NK, et al. Time‐restricted feeding in young men performing resistance training: A randomized controlled trial. Eur J Sport Sci. 2017;17(2): 200–207. https://doi.org/10.1080/17461391.2016.1223173

Gotthardt JD, Verpeut JL, Yeomans BL, et al. Intermittent Fasting Promotes Fat Loss With Lean Mass Retention, Increased Hypothalamic Norepinephrine Content, and Increased Neuropeptide Y Gene Expression in Diet-Induced Obese Male Mice. Endocrinology. 2016;157(2):679–691. https://doi.org/10.1210/en.2015-1622

Kahleova H, Belinova L, Malinska H, et al. Eating two larger meals a day (breakfast and lunch) is more effective than six smaller meals in a reduced-energy regimen for patients with type 2 diabetes: a randomised crossover study. Diabetologia. 2014;57(8):1552–1560. https://doi.org/10.1007/s00125-014-3253-5

Dorighello GG, Rovani JC, Luhman CJF, et al. Food restriction by intermittent fasting induces diabetes and obesity and aggravates spontaneous atherosclerosis development in hypercholesterolaemic mice. Br J Nutr. 2014;111(6): 979–986. https://doi.org/10.1017/S0007114513003383

Cerqueira FM, da Cunha FM, Caldeira da Silva CC, et al. Long-term intermittent feeding, but not caloric restriction, leads to redox imbalance, insulin receptor nitration, and glucose intolerance. Free Radic Biol Med. 2011;51(7):1454–1460. https://doi.org/10.1016/j.freeradbiomed.2011.07.006

Sutton EF, Beyl R, Early KS, et al. Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metab. 2018;27(6):1212-1221.e3. https://doi.org/10.1016/j.cmet.2018.04.010

Manzanero S, Erion JR, Santro T, et al. Intermittent Fasting Attenuates Increases in Neurogenesis after Ischemia and Reperfusion and Improves Recovery. J Cereb Blood Flow Metab. 2014;34(5):897–905. https://doi.org/10.1038/jcbfm.2014.36

Jeong JH, Yu KS, Bak DH, et al. Intermittent fasting is neuroprotective in focal cerebral ischemia by minimizing autophagic flux disturbance and inhibiting apoptosis. Exp Ther Med. 2016;12(5):3021–3028. https://doi.org/10.3892/etm.2016.3852

Santos HO, Macedo RCO. Impact of intermittent fasting on the lipid profile: Assessment associated with diet and weight loss. Clin Nutr ESPEN. 2018;24:14–21. https://doi.org/10.1016/j.clnesp.2018.01.002

Yuan X, Wang J, Yang S, et al. Effect of Intermittent Fasting Diet on Glucose and Lipid Metabolism and Insulin Resistance in Patients with Impaired Glucose and Lipid Metabolism: A Systematic Review and Meta-Analysis. Int J Endocrinol. 2022; 2022:6999907. https://doi.org/10.1155/2022/6999907

Megur A, Baltriukienė D, Bukelskienė V, et al. The Microbiota–Gut–Brain Axis and Alzheimer’s Disease: Neuroinflammation Is to Blame? Nutrients. 2020;13(1):37. https://doi.org/10.3390/nu13010037

Liu S, Gao J, Zhu M, et al. Gut Microbiota and Dysbiosis in Alzheimer’s Disease: Implications for Pathogenesis and Treatment. Mol Neurobiol. 2020;57(12):5026–5043. https://doi.org/10.1007/s12035-020-02073-3

Liu Z, Dai X, Zhang H, et al. Gut microbiota mediates intermittent-fasting alleviation of diabetes-induced cognitive impairment. Nat Commun. 2020;11(1):855. https://doi.org/10.1038/s41467-020-14676-4

Zeb F, Wu X, Chen L, et al. Effect of time-restricted feeding on metabolic risk and circadian rhythm associated with gut microbiome in healthy males. Br J Nutr. 2020;123(11):1216–1226. https://doi.org/10.1017/S0007114519003428

Liu S, Zeng M, Wan W, et al. The Health-Promoting Effects and the Mechanism of Intermittent Fasting. J Diabetes Res. 2023;2023:4038546. https://doi.org/10.1155/2023/4038546

Zhong F, Zhu T, Jin X, et al. Adverse events profile associated with intermittent fasting in adults with overweight or obesity: a systematic review and meta-analysis of randomized controlled trials. Nutr J. 2024;23(1):72. https://doi.org/10.1186/s12937-024-00975-9

Downloads

  • PDF

Published

2024-09-30

How to Cite

1.
STENCEL, Nicola Joanna, SZCZOT, Jakub, KRALA-SZKARADOWSKA, Magdalena, SKRZYPCZAK, Katarzyna Oktawia and STUCZYŃSKI , Sebastian Krzysztof. The Impact of Intermittent Fasting on Alzheimer’s Disease Risk: A Literature Review. Quality in Sport. Online. 30 September 2024. Vol. 23, p. 55272. [Accessed 10 November 2025]. DOI 10.12775/QS.2024.23.55272.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 23 (2024)

Section

Medical Sciences

License

Copyright (c) 2024 Nicola Joanna Stencel, Jakub Szczot, Magdalena Krala-Szkaradowska, Katarzyna Oktawia Skrzypczak, Sebastian Krzysztof Stuczyński

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats

Number of views and downloads: 444
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

Alzheimer’s disease, dementia, intermittent fasting, ketone bodies, cognition
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop