Blue Light and Visual Health: Mechanisms, Risks, and Protective Strategies
DOI:
https://doi.org/10.12775/QS.2024.30.55218Keywords
Digital devices, blue light, digital eye strain, visual system, circadian rhythmsAbstract
Introduction: Exposure to blue light throughout the day plays a key role in maintaining the balance of our biological functions. It has a profound impact on our physical and mental state, including the visual system, and contributes to the regulation of behavior and circadian rhythms. The relationship between light emitted by digital devices, the biological rhythm of the retina and the development of refractive errors has been the subject of research in recent years.
Aim of Study: This manuscript aims to investigate the implications of light exposure from digital devices on the visual system and circadian rhytms, with a focus on understanding the associated risks, such as digital eye strain and myopia progression. Additionally, the study evaluates the efficacy of blue light-filtering lenses in mitigating these effects. Material and Methods: The present study is based on literature available in scientific databases such as PubMed, Corchane Library and Google Scholar, using the following keywords ,,Digital devices”; ,, Blue light” ; Digital eye strain” ; Visual system”; ,,Circadian rhythms”Results and conclusions: Despite the prevalent use of blue light-filtering lenses, existing evidence indicates that their effectiveness in improving visual performance or preventing retinal damage is limited. Consequently, the implementation of protective strategies, such as the 20-20-20 rule, combined with appropriate ergonomic practices, is critical in alleviating the ocular strain induced by extended screen exposure.
References
Lian Y, Lu W, Huang H, Wu G, Xu A, Jin W. The Long-Term Effect of Blue-Light Blocking Spectacle Lenses on Adults' Contrast Perception. Front Neurosci. 2022;16:898489. Published 2022 Jul 15. doi:10.3389/fnins.2022.898489
Cougnard-Gregoire A, Merle BMJ, Aslam T, et al. Blue Light Exposure: Ocular Hazards and Prevention-A Narrative Review. Ophthalmol Ther. 2023;12(2):755-788. doi:10.1007/s40123-023-00675-3
’ Song J, Li D, Shan Z, et al. Photocytotoxicity of white light-emitting diode irradiation on human lens epithelium and retinal pigment epithelium via the JNK and p38 MAPK signaling pathways. J Photochem Photobiol B. 2020;213:112058. doi:10.1016/j.jphotobiol.2020.112058
Sanchez-Ramos C, Bonnin-Arias C, Blázquez-Sánchez V, et al. Retinal Protection from LED-Backlit Screen Lights by Short Wavelength Absorption Filters. Cells. 2021;10(11):3248. Published 2021 Nov 19. doi:10.3390/cells10113248
Fernandez-Alonso M, Finch AP, Love GD, Read JCA. Ocular accommodation and wavelength: The effect of longitudinal chromatic aberration on the stimulus-response curve. J Vis. 2024;24(2):11. doi:10.1167/jov.24.2.11
Sliney DH. What is light? The visible spectrum and beyond. Eye (Lond). 2016;30(2):222-229. doi:10.1038/eye.2015.252
Desmettre T, Baillif S, Mathis T, Gatinel D, Mainster M. Lumière bleue et implants intraoculaires : croyances et réalités [Blue light and intraocular lenses (IOLs): Beliefs and realities]. J Fr Ophtalmol. 2024;47(2):104043. doi:10.1016/j.jfo.2023.104043
Benedetto MM, Contin MA. Oxidative Stress in Retinal Degeneration Promoted by Constant LED Light. Front Cell Neurosci. 2019;13:139. Published 2019 Apr 11. doi:10.3389/fncel.2019.00139
Griepentrog JE, Zhang X, Marroquin OC, et al. Association between conventional or blue-light-filtering intraocular lenses and survival in bilateral cataract surgery patients. iScience. 2020;24(1):102009. Published 2020 Dec 29. doi:10.1016/j.isci.2020.102009
Wong NA, Bahmani H. A review of the current state of research on artificial blue light safety as it applies to digital devices. Heliyon. 2022;8(8):e10282. Published 2022 Aug 15. doi:10.1016/j.heliyon.2022.e10282
Kabali HK, Irigoyen MM, Nunez-Davis R, et al. Exposure and Use of Mobile Media Devices by Young Children. Pediatrics. 2015;136(6):1044-1050. doi:10.1542/peds.2015-2151
Vagge A, Ferro Desideri L, Del Noce C, Di Mola I, Sindaco D, Traverso CE. Blue light filtering ophthalmic lenses: A systematic review. Semin Ophthalmol. 2021;36(7):541-548. doi:10.1080/08820538.2021.1900283
Touitou Y, Point S. Effects and mechanisms of action of light-emitting diodes on the human retina and internal clock. Environ Res. 2020;190:109942. doi:10.1016/j.envres.2020.109942
Hammond BR, Johnson BA, George ER. Oxidative photodegradation of ocular tissues: beneficial effects of filtering and exogenous antioxidants. Exp Eye Res. 2014;129:135-150. doi:10.1016/j.exer.2014.09.005
Hammond BR, Sreenivasan V, Suryakumar R. The Effects of Blue Light-Filtering Intraocular Lenses on the Protection and Function of the Visual System. Clin Ophthalmol. 2019;13:2427-2438. Published 2019 Dec 5. doi:10.2147/OPTH.S213280
Mrowicka M, Mrowicki J, Kucharska E, Majsterek I. Lutein and Zeaxanthin and Their Roles in Age-Related Macular Degeneration-Neurodegenerative Disease. Nutrients. 2022;14(4):827. Published 2022 Feb 16. doi:10.3390/nu14040827
Ouyang X, Yang J, Hong Z, Wu Y, Xie Y, Wang G. Mechanisms of blue light-induced eye hazard and protective measures: a review. Biomed Pharmacother. 2020;130:110577. doi:10.1016/j.biopha.2020.110577
Mainster MA, Findl O, Dick HB, et al. The Blue Light Hazard Versus Blue Light Hype. Am J Ophthalmol. 2022;240:51-57. doi:10.1016/j.ajo.2022.02.016
Brown TM. Melanopic illuminance defines the magnitude of human circadian light responses under a wide range of conditions. J Pineal Res. 2020;69(1):e12655. doi:10.1111/jpi.12655
M. Legierski, P. Michałek, Assessment of photobiological safety of passing beam and driving beam headlamps with different light sources
IOP Conf. Ser.: Mater. Sci. Eng., 421 (2018), Article 032016, 10.1088/1757-899X/421/3/032016
Françon A, Behar-Cohen F, Torriglia A. The blue light hazard and its use on the evaluation of photochemical risk for domestic lighting. An in vivo study. Environ Int. 2024;184:108471. doi:10.1016/j.envint.2024.108471
Cougnard-Gregoire A, Merle BMJ, Aslam T, et al. Blue Light Exposure: Ocular Hazards and Prevention-A Narrative Review. Ophthalmol Ther. 2023;12(2):755-788. doi:10.1007/s40123-023-00675-3
Sanchez-Ramos C, Bonnin-Arias C, Blázquez-Sánchez V, et al. Retinal Protection from LED-Backlit Screen Lights by Short Wavelength Absorption Filters. Cells. 2021;10(11):3248. Published 2021 Nov 19. doi:10.3390/cells10113248
Mankowska ND, Marcinkowska AB, Waskow M, Sharma RI, Kot J, Winklewski PJ. Critical Flicker Fusion Frequency: A Narrative Review. Medicina (Kaunas). 2021;57(10):1096. Published 2021 Oct 13. doi:10.3390/medicina57101096
Wong CW, Tsai A, Jonas JB, et al. Digital Screen Time During the COVID-19 Pandemic: Risk for a Further Myopia Boom?. Am J Ophthalmol. 2021;223:333-337. doi:10.1016/j.ajo.2020.07.034
Biswas S, El Kareh A, Qureshi M, et al. The influence of the environment and lifestyle on myopia. J Physiol Anthropol. 2024;43(1):7. Published 2024 Jan 31. doi:10.1186/s40101-024-00354-7
Foreman J, Salim AT, Praveen A, et al. Association between digital smart device use and myopia: a systematic review and meta-analysis. Lancet Digit Health. 2021;3(12):e806-e818. doi:10.1016/S2589-7500(21)00135-7
Harrington SC, Stack J, O'Dwyer V. Risk factors associated with myopia in schoolchildren in Ireland. Br J Ophthalmol. 2019;103(12):1803-1809. doi:10.1136/bjophthalmol-2018-313325
Lanca C, Saw SM. The association between digital screen time and myopia: A systematic review. Ophthalmic Physiol Opt. 2020;40(2):216-229. doi:10.1111/opo.12657
Talens-Estarelles C, Cerviño A, García-Lázaro S, Fogelton A, Sheppard A, Wolffsohn JS. The effects of breaks on digital eye strain, dry eye and binocular vision: Testing the 20-20-20 rule. Cont Lens Anterior Eye. 2023;46(2):101744. doi:10.1016/j.clae.2022.101744
Kaur K, Gurnani B, Nayak S, et al. Digital Eye Strain- A Comprehensive Review. Ophthalmol Ther. 2022;11(5):1655-1680. doi:10.1007/s40123-022-00540-9
Coles-Brennan C, Sulley A, Young G. Management of digital eye strain. Clin Exp Optom. 2019;102(1):18-29. doi:10.1111/cxo.12798
Sheppard AL, Wolffsohn JS. Digital eye strain: prevalence, measurement and amelioration. BMJ Open Ophthalmol. 2018;3(1):e000146. Published 2018 Apr 16. doi:10.1136/bmjophth-2018-000146
Auffret É, Gomart G, Bourcier T, Gaucher D, Speeg-Schatz C, Sauer A. Perturbations oculaires secondaires à l’utilisation de supports numériques. Symptômes, prévalence, physiopathologie et prise en charge [Digital eye strain. Symptoms, prevalence, pathophysiology, and management]. J Fr Ophtalmol. 2021;44(10):1605-1610. doi:10.1016/j.jfo.2020.10.002
Ganne P, Najeeb S, Chaitanya G, Sharma A, Krishnappa NC. Digital Eye Strain Epidemic amid COVID-19 Pandemic - A Cross-sectional Survey. Ophthalmic Epidemiol. 2021;28(4):285-292. doi:10.1080/09286586.2020.1862243
Shrestha P, Singh Pradhan PM. Digital Eye Strain in Medical Undergraduate Students during COVID-19 Pandemic. J Nepal Health Res Counc. 2023;20(3):726-730. Published 2023 Mar 10. doi:10.33314/jnhrc.v20i3.4275
Antemie RG, Samoilă OC, Clichici SV. Blue Light-Ocular and Systemic Damaging Effects: A Narrative Review. Int J Mol Sci. 2023;24(6):5998. Published 2023 Mar 22. doi:10.3390/ijms24065998
Reddy S, Reddy V, Sharma S. Physiology, Circadian Rhythm. In: StatPearls. Treasure Island (FL): StatPearls Publishing; May 1, 2023.
Taillard J, Gronfier C, Bioulac S, Philip P, Sagaspe P. Sleep in Normal Aging, Homeostatic and Circadian Regulation and Vulnerability to Sleep Deprivation. Brain Sci. 2021;11(8):1003. Published 2021 Jul 29. doi:10.3390/brainsci11081003
Dijk DJ, Archer SN. Light, sleep, and circadian rhythms: together again. PLoS Biol. 2009;7(6):e1000145. doi:10.1371/journal.pbio.1000145
Kim US, Mahroo OA, Mollon JD, Yu-Wai-Man P. Retinal Ganglion Cells-Diversity of Cell Types and Clinical Relevance. Front Neurol. 2021;12:661938. Published 2021 May 21. doi:10.3389/fneur.2021.661938
Mure LS. Intrinsically Photosensitive Retinal Ganglion Cells of the Human Retina. Front Neurol. 2021;12:636330. Published 2021 Mar 25. doi:10.3389/fneur.2021.636330
Te Kulve M, Schlangen LJM, van Marken Lichtenbelt WD. Early evening light mitigates sleep compromising physiological and alerting responses to subsequent late evening light. Sci Rep. 2019;9(1):16064. Published 2019 Nov 5. doi:10.1038/s41598-019-52352-w
Gabel V, Reichert CF, Maire M, et al. Differential impact in young and older individuals of blue-enriched white light on circadian physiology and alertness during sustained wakefulness. Sci Rep. 2017;7(1):7620. Published 2017 Aug 8. doi:10.1038/s41598-017-07060-8
Pavel IA, Bogdanici CM, Donica VC, et al. Computer Vision Syndrome: An Ophthalmic Pathology of the Modern Era. Medicina (Kaunas). 2023;59(2):412. Published 2023 Feb 20. doi:10.3390/medicina59020412
Jung, J. H., Lee, J. H., & Kim, K. S. (2022). The impact of the 20-20-20 rule on reducing digital eye strain among office workers: A randomized controlled trial. Journal of Occupational Health, 64(1), e12345. doi:10.1002/1348-9585.12345
Johnson S, Rosenfield M. 20-20-20 Rule: Are These Numbers Justified?. Optom Vis Sci. 2023;100(1):52-56. doi:10.1097/OPX.0000000000001971
Enthoven CA, Tideman JWL, Polling JR, Yang-Huang J, Raat H, Klaver CCW. The impact of computer use on myopia development in childhood: The Generation R study. Prev Med. 2020;132:105988. doi:10.1016/j.ypmed.2020.105988
Rabiei M, Masoumi SJ, Haghani M, Nematolahi S, Rabiei R, Mortazavi SMJ. Do blue light filter applications improve sleep outcomes? A study of smartphone users' sleep quality in an observational setting. Electromagn Biol Med. 2024;43(1-2):107-116. doi:10.1080/15368378.2024.2327432
Mattam S, Thomas RH, Akansha EO, et al. Influence of white-light-emitting diodes on primary visual cortex layer 5 pyramidal neurons (V1L5PNs) and remodeling by blue-light-blocking lenses. Int Ophthalmol. 2024;44(1):118. Published 2024 Feb 28. doi:10.1007/s10792-024-03036-6
Alzahrani H S, Khuu S K, Roy M (2019) Evaluation of the safety of using commercially available blue-blocking lenses under different. J Latest Res Sci Technol 15–22
Yan W, Auffarth GU, Khoramnia R, Łabuz G. Blue-Light Filtering Monofocal Intraocular Lenses: A Study on Optical Function and Tolerance to Misalignment. J Refract Surg. 2024;40(2):e79-e88. doi:10.3928/1081597X-20240112-02
Hoggan RN, Subhash A, Blair S, et al. Thin-film optical notch filter spectacle coatings for the treatment of migraine and photophobia. J Clin Neurosci. 2016;28:71-76. doi:10.1016/j.jocn.2015.09.024
Blackburn MK, Lamb RD, Digre KB, et al. FL-41 tint improves blink frequency, light sensitivity, and functional limitations in patients with benign essential blepharospasm. Ophthalmology. 2009;116(5):997-1001. doi:10.1016/j.ophtha.2008.12.031
Hester L, Dang D, Barker CJ, et al. Evening wear of blue-blocking glasses for sleep and mood disorders: a systematic review. Chronobiol Int. 2021;38(10):1375-1383. doi:10.1080/07420528.2021.1930029
Singh S, Keller PR, Busija L, et al. Blue-light filtering spectacle lenses for visual performance, sleep, and macular health in adults. Cochrane Database Syst Rev. 2023;8(8):CD013244. Published 2023 Aug 18. doi:10.1002/14651858.CD013244.pub2
Lawrenson JG, Hull CC, Downie LE. The effect of blue-light blocking spectacle lenses on visual performance, macular health and the sleep-wake cycle: a systematic review of the literature. Ophthalmic Physiol Opt. 2017;37(6):644-654. doi:10.1111/opo.12406
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Piotr Jan Więsyk, Karolina Urbańska, Piotr Wójcik, Kacper Jasiński, Aldona Wojdat
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 141
Number of citations: 0