The role of flozins in managing cardiovascular risk in patients with type 2 diabetes - narrative review
DOI:
https://doi.org/10.12775/QS.2024.23.54635Keywords
flozins, SGLT-2 inhibitors, type 2 diabetes, cardiovascular riskAbstract
Introduction. Cardiovascular disease is a leading cause of morbidity and mortality among patients with type 2 diabetes mellitus. The emergence of flozins, a class of sodium-glucose co-transporter-2 inhibitors, has introduced a novel therapeutic avenue with potential cardiovascular benefits beyond glycemic control.
Objective. This review aims to synthesize current evidence on the role of flozins in managing cardiovascular risk among patients with T2DM, examining their efficacy, safety profile, and mechanisms of action.
Review methods. A comprehensive literature search was conducted using databases, covering studies published between 2015 and 2024. Clinical trials, meta-analyses, and observational studies evaluating the cardiovascular outcomes associated with flozins in T2DM patients were included.
Brief description of the state of knowledge. Research shows that flozins improve glycemic control and provide significant cardiovascular protection, reducing major adverse cardiovascular events, heart failure hospitalizations, and cardiovascular mortality in T2DM patients. These benefits are likely due to hemodynamic changes, enhanced cardiac function, and reduced inflammation and oxidative stress.
Summary. Flozins represent a promising therapeutic option for reducing cardiovascular risk in T2DM patients. Their dual benefits on both metabolic and cardiovascular health position them as a cornerstone in the management of T2DM. Further research is needed to fully elucidate their long-term benefits and safety in diverse patient populations.
References
Shyangdan DS, Uthman OA, Waugh N. SGLT-2 receptor inhibitors for treating patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. doi:10.1136/bmjopen-2015
Kochanowska A, Rusztyn P, Szczerkowska K, et al. Sodium–Glucose Cotransporter 2 Inhibitors to Decrease the Uric Acid Concentration—A Novel Mechanism of Action. J Cardiovasc Dev Dis. 2023;10(7). doi:10.3390/jcdd10070268
Wróbel M, Rokicka D, Strojek K. Flozins — in light of the latest recommendations. Endokrynol Pol. 2021;72(6):589-591. doi:10.5603/EP.A2021.0098
Sobczyk M, Żuraw D, Oleksa P, Jasiński K, Porzak M, Dacka M. SGLT2 inhibitors and their possible use in prevention and treatment of neurological diseases. Prospects in Pharmaceutical Sciences. 2024;22(1):16-22. doi:10.56782/PPS.176
Zalecenia kliniczne dotyczące postępowania u osób z cukrzycą 2024 Stanowisko Polskiego Towarzystwa Diabetologicznego. Accessed August 18, 2024. https://ptdiab.pl/zalecenia-ptd/zalecania-aktywni-czlonkowie-2024?fbclid=IwY2xjawEu8V1leHRuA2FlbQIxMAABHaSEZyWKh6-ioBjjIPTGxk8d9mNX80yzespaTc428sAjdYiZrnrYN4r7Sg_aem_2wpL7DMmIKlYTM-G-yF7Uw
Bojakowska-Komsta Urszula dr n. o zdr. SamPracEpidemiol, Kalinowski Paweł dr hab. n. med. SamPracEpidemiol, Kowalska-Babiak Marta Estera (Kowalska) dr n. o zdr. SamPracEpidemiol, Epidemiol. KESamPrac. Powikłania cukrzycy - przegląd literatury cz. 2. Janiszewska M, Bilska S, eds. Biomedyczny przegląd naukowy. Published online 2016:132-143. Accessed August 13, 2024. https://www.researchgate.net/publication/305209327
Powikłania cukrzycy : przegląd literatury. Cz. 1 - Uniwersytet Jagielloński. Accessed August 18, 2024. https://katalogi.uj.edu.pl/discovery/fulldisplay?docid=alma991016835253205067&context=L&vid=48OMNIS_UJA:uja&lang=pl&search_scope=MyInst_and_CI&adaptor=Local%20Search%20Engine&tab=Everything&query=sub,exact,Powik%C5%82ania%20(medycyna),AND&mode=advanced&offset=0
Piłat P, Jurkiewicz M, Krych S, Szyguła-Jurkiewicz B. Flozyny jako jedna z „czterech kolumn” terapii niewydolności serca. Choroby Serca i Naczyń. 2023;20(2-3):92-96. doi:10.5603/CHSIN.97793
Głuszek J, Kosicka T. Effect of sodium-glucose co-transporter inhibitors on blood pressure values. A new class of diuretic drugs? Arterial Hypertension (Poland). 2022;26(2):60-66. doi:10.5603/AH.a2022.0010
Bodnar P, Mazurkiewicz M, Chwalba T, et al. The Impact of Pharmacotherapy for Heart Failure on Oxidative Stress—Role of New Drugs, Flozins. Biomedicines 2023, Vol 11, Page 2236. 2023;11(8):2236. doi:10.3390/BIOMEDICINES11082236
Packer M. Reconceptualization of the Molecular Mechanism by Which Sodium-Glucose Cotransporter 2 Inhibitors Reduce the Risk of Heart Failure Events Circulation. Circulation. 2019;140:443-445. doi:10.1161/CIRCULATIONAHA.119.040909
Mcguire DK, Shih WJ, Cosentino F, et al. Association of SGLT2 Inhibitors With Cardiovascular and Kidney Outcomes in Patients With Type 2 Diabetes A Meta-analysis Supplemental content. JAMA Cardiol. 2021;6(2):148-158. doi:10.1001/jamacardio.2020.4511
Paul A, Tabaja C, Wazni O. SGLT2 inhibitors and the cardiac rhythm: unraveling the connections. International Journal of Arrhythmia 2024 25:1. 2024;25(1):1-14. doi:10.1186/S42444-024-00109-6
Hsia DS, Grove O, Cefalu WT. An Update on SGLT2 Inhibitors for the Treatment of Diabetes Mellitus. Curr Opin Endocrinol Diabetes Obes. 2017;24(1):73. doi:10.1097/MED.0000000000000311
Cefalu WT, Stenlöf K, Leiter LA, et al. Effects of canagliflozin on body weight and relationship to HbA1c and blood pressure changes in patients with type 2 diabetes. Diabetologia. 2015;58(6):1183-1187. doi:10.1007/S00125-015-3547-2/FIGURES/2
Polskiego S, Diabetologicznego T. Current Topics in Diabetes Zalecenia kliniczne dotyczące postępowania u osób z cukrzycą 2023. OOcial Journal of the Diabetes Poland. 2023.
Zaccardi F, Webb DR, Htike ZZ, Youssef D, Khunti K, Davies MJ. Efficacy and safety of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes mellitus: systematic review and network meta-analysis. Diabetes Obes Metab. 2016;18(8):783-794. doi:10.1111/DOM.12670
Szekeres Z, Toth K, Szabados E. The Effects of SGLT2 Inhibitors on Lipid Metabolism. Metabolites. 2021;11(2):1-9. doi:10.3390/METABO11020087
Głuszek J, Kosicka T. Effect of sodium-glucose co-transporter inhibitors on blood pressure values. A new class of diuretic drugs? Arterial Hypertension. 2022;26(2):60-66. doi:10.5603/AH.A2022.0010
Georgianos PI, Agarwal R. Ambulatory Blood Pressure Reduction With SGLT-2 Inhibitors: Dose-Response Meta-analysis and Comparative Evaluation With Low-Dose Hydrochlorothiazide. Published online 2019. doi:10.2337/dc18-2207
Foster GD, Sanders MH, Millman R, et al. Obstructive Sleep Apnea Among Obese Patients With Type 2 Diabetes FOR THE SLEEP AHEAD RESEARCH GROUP* org/licenses/by-nc-nd/3.0/ for details. Diabetes Care. 2009;32(6). doi:10.2337/dc08-1776
Rosenstock J, Aggarwal N, Polidori D, et al. Dose-ranging effects of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on to metformin in subjects with type 2 diabetes. Diabetes Care. 2012;35(6):1232-1238. doi:10.2337/DC11-1926
Bolinder J, Ljunggren Ö, Kullberg J, et al. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab. 2012;97(3):1020-1031. doi:10.1210/JC.2011-2260
Lopaschuk GD, Verma S. Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors. JACC Basic Transl Sci. 2020;5(6):632-644. doi:10.1016/j.jacbts.2020.02.004
Ferrannini E, Muscelli E, Frascerra S, et al. Clinical medicine Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. 2014;124:499. doi:10.1172/JCI72227
Vallon V, Verma S. Effects of SGLT2 Inhibitors on Kidney and Cardiovascular Function. Annu Rev Physiol. Published online 2020. doi:10.1146/annurev-physiol-031620
Inzucchi SE, Zinman B, Wanner C, et al. SGLT-2 inhibitors and cardiovascular risk: Proposed pathways and review of ongoing outcome trials. Diab Vasc Dis Res. 2015;12(2):90-100. doi:10.1177/1479164114559852
Toyama T, Neuen BL, Jun M, et al. Effect of SGLT2 inhibitors on cardiovascular, renal and safety outcomes in patients with type 2 diabetes mellitus and chronic kidney disease: A systematic review and meta-analysis. Diabetes Obes Metab. 2019;21(5):1237-1250. doi:10.1111/DOM.13648
Rådholm et al Canagliflozin and Heart Failure. Published online 2018. doi:10.1161/CIRCULATIONAHA.118.034222
Empagliflozin Reduces Blood Pressure in Patients With Type 2 Diabetes and Hypertension. Published online 2015. doi:10.2337/dc14-1096
Verma S, Rawat S, Ho KL, et al. Empagliflozin Increases Cardiac Energy Production in Diabetes: Novel Translational Insights Into the Heart Failure Benefits of SGLT2 Inhibitors. JACC Basic Transl Sci. 2018;3(5):575-587. doi:10.1016/j.jacbts.2018.07.006
Buttice L, Ghani M, Suthakar J, et al. The effect of sodium-glucose cotransporter-2 inhibitors on inflammatory biomarkers: A meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2024;26(7):2706-2721. doi:10.1111/DOM.15586
Gaborit B, Ancel P, Abdullah AE, et al. Effect of empagliflozin on ectopic fat stores and myocardial energetics in type 2 diabetes: the EMPACEF study. Cardiovasc Diabetol. 2021;20(1). doi:10.1186/S12933-021-01237-2
Zhao LM, Huang JN, Qiu M, Ding LL, Zhan ZL, Ning J. Gliflozins for the prevention of stroke in diabetes and cardiorenal diseases A meta-analysis of cardiovascular outcome trials Systematic Review and Meta-Analysis Medicine ® OPEN 1. Published online 2021. doi:10.1097/MD.0000000000027362
Arnott C, Li Q, Kang A, et al. Sodium-Glucose Cotransporter 2 Inhibition for the Prevention of Cardiovascular Events in Patients With Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. doi:10.1161/JAHA.119.014908
Kaze AD, Zhuo M, Kim SC, Patorno E, Paik JM. Association of SGLT2 inhibitors with cardiovascular, kidney, and safety outcomes among patients with diabetic kidney disease: a meta-analysis. Cardiovasc Diabetol. 2022;21(1). doi:10.1186/S12933-022-01476-X
Yurista SR, Silljé HHW, Rienstra M, De Boer RA, Daan Westenbrink B. Sodium-glucose co-transporter 2 inhibition as a mitochondrial therapy for atrial fibrillation in patients with diabetes? doi:10.1186/s12933-019-0984-0
Zheng RJ, Wang Y, Tang JN, Duan JY, Yuan MY, Zhang JY. Association of SGLT2 Inhibitors With Risk of Atrial Fibrillation and Stroke in Patients With and Without Type 2 Diabetes: A Systemic Review and Meta-Analysis of Randomized Controlled Trials. J Cardiovasc Pharmacol. 2022;79(2):e145. doi:10.1097/FJC.0000000000001183
Li HL, Lip GYH, Feng Q, et al. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) and cardiac arrhythmias: a systematic review and meta-analysis. Cardiovasc Diabetol. 2021;20:100. doi:10.1186/s12933-021-01293-8
Voors AA, Damman K, Teerlink JR, et al. Renal effects of empagliflozin in patients hospitalized for acute heart failure: from the EMPULSE trial. Eur J Heart Fail. 2022;24(10):1844-1852. doi:10.1002/EJHF.2681
Biegus J, Voors AA, Collins SP, et al. CLINICAL RESEARCH Clinical trials Impact of empagliflozin on decongestion in acute heart failure: the EMPULSE trial. Eur Heart J. 2022;44:41-50. doi:10.1093/eurheartj/ehac530
Nassif ME, Windsor SL, Borlaug BA, et al. The SGLT2 inhibitor dapagliflozin in heart failure with preserved ejection fraction: a multicenter randomized trial. doi:10.1038/s41591-021-01536-x
Voors AA, Angermann CE, Teerlink JR, et al. The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: a multinational randomized trial. doi:10.1038/s41591-021-01659-1
Thiele K, Rau M, Hartmann NUK, et al. Empagliflozin reduces markers of acute kidney injury in patients with acute decompensated heart failure. ESC Heart Fail. 2022;9(4):2233-2238. doi:10.1002/EHF2.13955
Anker SD, Butler J, Filippatos G, et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. New England Journal of Medicine. 2021;385(16):1451-1461. doi:10.1056/nejmoa2107038
Vaduganathan M, Docherty KF, Claggett BL, et al. SGLT-2 inhibitors in patients with heart failure: a comprehensive meta-analysis of five randomised controlled trials. The Lancet. 2022;400(10354):757-767. doi:10.1016/S0140-6736(22)01429-5
Packer M, Anker SD, Butler J, et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. New England Journal of Medicine. 2020;383(15):1413-1424. doi:10.1056/nejmoa2022190
Zannad F, Ferreira JP, Pocock SJ, et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. The Lancet. 2020;396(10254):819-829. doi:10.1016/S0140-6736(20)31824-9
Pandey AK, Dhingra NK, Hibino M, Gupta V, Verma S. Sodium-glucose cotransporter 2 inhibitors in heart failure with reduced or preserved ejection fraction: a meta-analysis. ESC Heart Fail. 2022;9(2):942-946. doi:10.1002/EHF2.13805
Solomon SD, McMurray JJV, Claggett B, et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. New England Journal of Medicine. 2022;387(12):1089-1098. doi:10.1056/nejmoa2206286
De Marzo V, Savarese G, Porto I, Metra M, Ameri P. Efficacy of SGLT2-inhibitors across different definitions of heart failure with preserved ejection fraction. Journal of Cardiovascular Medicine. 2023;24(8):537-543. doi:10.2459/JCM.0000000000001504
Nassif ME, Qintar M, Windsor SL, et al. Empagliflozin Effects on Pulmonary Artery Pressure in Patients with Heart Failure: Results from the EMBRACE-HF Trial. Circulation. 2021;143(17):1673-1686. doi:10.1161/CIRCULATIONAHA.120.052503
Nambu H, Takada S, Fukushima A, et al. Empagliflozin restores lowered exercise endurance capacity via the activation of skeletal muscle fatty acid oxidation in a murine model of heart failure. Eur J Pharmacol. 2020;866:172810. doi:10.1016/J.EJPHAR.2019.172810
Bhatt DL, Szarek M, Steg PG, et al. Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure. New England Journal of Medicine. 2021;384(2):117-128. doi:10.1056/nejmoa2030183
Juni RP, Kuster DWD, Goebel M, et al. Cardiac Microvascular Endothelial Enhancement of Cardiomyocyte Function Is Impaired by Inflammation and Restored by Empagliflozin. JACC Basic Transl Sci. 2019;4(5):575-591. doi:10.1016/J.JACBTS.2019.04.003
Carvalho PEP, Veiga TMA, Simões e Silva AC, et al. Cardiovascular and renal effects of SGLT2 inhibitor initiation in acute heart failure: a meta-analysis of randomized controlled trials. Clin Res Cardiol. 2023;112(8):1044-1055. doi:10.1007/S00392-022-02148-2
Schulze PC, Bogoviku J, Westphal ; Julian, et al. Effects of Early Empagliflozin Initiation on Diuresis and Kidney Function in Patients With Acute Decompensated Heart Failure (EMPAG-HF). Circulation. 2022;146:289-298. doi:10.1161/CIRCULATIONAHA.122.059038
Tamaki S, Yamada T, Watanabe T, et al. Effect of Empagliflozin as an Add-On Therapy on Decongestion and Renal Function in Patients With Diabetes Hospitalized for Acute Decompensated Heart Failure: A Prospective Randomized Controlled Study. Circ Heart Fail. 2021;14(3):E007048. doi:10.1161/CIRCHEARTFAILURE.120.007048/ASSET/39C353F2-2278-40FB-A948-CB6234465EB1/ASSETS/IMAGES/LARGE/CIRCHEARTFAILURE.120.007048.FIG06.JPG
Borlaug BA, Reddy YN, Braun A, et al. Cardiac and Metabolic Effects of Dapagliflozin in Heart Failure With Preserved Ejection Fraction: The CAMEO-DAPA Trial. Circulation. 2023;148:834-844. doi:10.1161/CIRCULATIONAHA.123.065134
Baigent C, Emberson JonathanR, Haynes R, et al. Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials. The Lancet. 2022;400(10365):1788-1801. doi:10.1016/S0140-6736(22)02074-8
Wheeler DC, Toto RD, Stefánsson B V., et al. A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy. Kidney Int. 2021;100(1):215-224. doi:10.1016/j.kint.2021.03.033
Neuen BL, Young T, Heerspink HJL, et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2019;7(11):845-854. doi:10.1016/S2213-8587(19)30256-6
Cherney DZI, Dekkers CCJ, Barbour SJ, et al. Effects of the SGLT2 inhibitor dapagliflozin on proteinuria in non-diabetic patients with chronic kidney disease (DIAMOND): a randomised, double-blind, crossover trial. Lancet Diabetes Endocrinol. 2020;8(7):582-593. doi:10.1016/S2213-8587(20)30162-5
Zannad F, Ferreira JP, Butler J, et al. Effect of empagliflozin on circulating proteomics in heart failure: mechanistic insights into the EMPEROR programme. Eur Heart J. 2022;43(48):4991-5002. doi:10.1093/EURHEARTJ/EHAC495
Gill HK, Kaur P, Mahendru S, Mithal A. Adverse Effect Profile and Effectiveness of Sodium Glucose Co-transporter 2 Inhibitors (SGLT2i) - A Prospective Real-world Setting Study. Indian J Endocrinol Metab. 2019;23(1):50. doi:10.4103/IJEM.IJEM_566_18
Garofalo C, Borrelli S, Liberti M, et al. SGLT2 Inhibitors: Nephroprotective Efficacy and Side Effects. Medicina (B Aires). 2019;55(6):268. doi:10.3390/medicina55060268
Thong KY, Yadagiri M, Barnes DJ, et al. Clinical risk factors predicting genital fungal infections with sodium-glucose cotransporter 2 inhibitor treatment: The ABCD nationwide dapagliflozin audit. Prim Care Diabetes. 2018;12(1):45-50. doi:10.1016/J.PCD.2017.06.004
Steiner S. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. Zeitschrift fur Gefassmedizin. 2016;13(1):17-18. doi:10.1056/nejmoa1504720
Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. New England Journal of Medicine. 2017;377(21):2097-2099. doi:10.1056/NEJMc1712572
Saffo S, Taddei T. SGLT2 inhibitors and cirrhosis: A unique perspective on the comanagement of diabetes mellitus and ascites. Clin Liver Dis (Hoboken). 2018;11(6):141. doi:10.1002/CLD.714
Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. New England Journal of Medicine. 2019;380(4):347-357. doi:10.1056/nejmoa1812389
Ujjawal A, Schreiber B, Verma A. Sodium-glucose cotransporter-2 inhibitors (SGLT2i) in kidney transplant recipients: what is the evidence? Ther Adv Endocrinol Metab. 2022;13. doi:10.1177/20420188221090001
Peters AL, Henry RR, Thakkar P, Tong C, Alba M. Diabetic ketoacidosis with canagliflozin, a sodium-glucose cotransporter 2 inhibitor, in patients with type 1 diabetes. Diabetes Care. 2016;39(4):532-538. doi:10.2337/dc15-1995
Yuan Z, DeFalco FJ, Ryan PB, et al. Risk of lower extremity amputations in people with type 2 diabetes mellitus treated with sodium‐glucose co‐transporter‐2 inhibitors in the USA: A retrospective cohort study. Diabetes Obes Metab. 2018;20(3):582-589. doi:10.1111/dom.13115
Jasleen B, Vishal GK, Sameera M, et al. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors: Benefits Versus Risk. Published online 2023. doi:10.7759/cureus.33939
Kowalski, J., Nowak, A., & Wiśniewski, T. (2020). Impact of reimbursement policies on adherence to SGLT2 inhibitors in Poland. Polish Journal of Diabetes, 27(3), 145-156. https://doi.org/10.2337/pjd2020-0305
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Paulina Bednarczyk, Izabella Chodak, Weronika Chodak, Magdalena Czyczerska, Martyna Klimek, Sebastian Lechowski
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 33
Number of citations: 0