Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Quality in Sport

Influence of physical activity on the values of hemorheological parameters
  • Home
  • /
  • Influence of physical activity on the values of hemorheological parameters
  1. Home /
  2. Archives /
  3. Vol. 22 (2024) /
  4. Medical Sciences

Influence of physical activity on the values of hemorheological parameters

Authors

  • Anna Szpernalowska Warsaw Southern Hospital, Rotmistrza Witolda Pileckiego 99, 02-781 Warsaw https://orcid.org/0009-0008-2016-5300
  • Anna Marcinkowska-Gapińska Department of Biophysics, Chair of Biophysics, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan https://orcid.org/0000-0002-9180-2644

DOI:

https://doi.org/10.12775/QS.2024.22.54476

Keywords

exercise, blood viscosity, physical activity, hemorheology

Abstract

Physical activity is a major factor contributing to maintaining overall health and properly functioning circulatory system. One of the underlying mechanisms is modifying blood flow by influencing hemorheological parameters, the most important of which are: hematocrit, plasma viscosity, whole blood viscosity, the ability of red blood cells to aggregate, deform and orient. We conducted a literature review to investigate how different types, intensities and phases of physical activity affect rheological properties of blood. The results show that short-term effects of exercise differ from the long-term consequences and rheology of blood varies depending on strength/endurance type of the training as good as on its regularity and intensity. Findings from this research may be applicable in improving sport’s performance and health maintenance in athletes.

References

Taco-Vasquez ED, Barrera F, Serrano-Duenas M, Jimenez E, Rocuts A, Riveros Perez E. Association between Blood Viscosity and Cardiovascular Risk Factors in Patients with Arterial Hypertension in a High Altitude Setting. Cureus. 2019;11(1):e3925. Published 2019 Jan 21. https://doi:10.7759/cureus.3925

Erdoğa G., Yenerçağ M, Arslan U. The Relationship between Blood Viscosity and Acute Arterial Occlusion. Journal of Cardiovascular Emergencies. 2020; 6(1), 7–12. https://doi.org/10.2478/jce-2020-0002

Baskurt OK, Hardeman MR, Rampling MW. Handbook of Hemorheology and Hemodynamics. IOS Press. 2007

Ernst E. Changes in blood rheology produced by exercise. JAMA. 1985;253(20):2962-2963.

Brun JF, Varlet-Marie E, Romain AJ, Guiraudou M, Raynaud de Mauverger E. Exercise hemorheology: Moving from old simplistic paradigms to a more complex picture. Clin Hemorheol Microcirc. 2013;55(1):15-27. doi:10.3233/CH-131686

Varlet-Marie E, Guiraudou M, Fédou C, Raynaud de Mauverger E, Durand F, Brun JF. Nutritional and metabolic determinants of blood rheology differ between trained and sedentary individuals. Clin Hemorheol Microcirc. 2013;55(1):39-54. doi:10.3233/CH-131688

Ivanov I. Hemorheological Alterations and Physical Activity. Applied Sciences. 2022; 12(20):10374. https://doi.org/10.3390/app122010374

Lerche D, Bäumler H, Kucera W, Meier W, Paulitschke M. Die Fliesseigenschaften von Blut und ihre Charakterisierung mittels hämorheologischer Methoden [The flow properties of blood and their characterization by hemorheologic methods]. Folia Haematol Int Mag Klin Morphol Blutforsch. 1989;116(5):631-652.

Szanto S, Mody T, Gyurcsik Z, et al. Alterations of Selected Hemorheological and Metabolic Parameters Induced by Physical Activity in Untrained Men and Sportsmen. Metabolites. 2021;11(12):870. Published 2021 Dec 14. doi:10.3390/metabo11120870

Robert M, Stauffer E, Nader E, et al. Impact of Trail Running Races on Blood Viscosity and Its Determinants: Effects of Distance. Int J Mol Sci. 2020;21(22):8531. Published 2020 Nov 12. doi:10.3390/ijms21228531

Késmárky G, Kenyeres P, Rábai M, Tóth K. Plasma viscosity: a forgotten variable. Clin Hemorheol Microcirc. 2008;39(1-4):243-246.

Brooks GA, Mercier J. Balance of carbohydrate and lipid utilization during exercise: the "crossover" concept. J Appl Physiol (1985). 1994;76(6):2253-2261. doi:10.1152/jappl.1994.76.6.2253

Brun JF, Varlet-Marie E, Jerome A, Mercier J. Measurement and Physiological Relevance of the Maximal Lipid Oxidation Rate During Exercise (LIPOXmax) [Internet]. An International Perspective on Topics in Sports Medicine and Sports Injury. InTech; 2012. http://dx.doi.org/10.5772/25451

Nader E, Monedero D, Robert M, et al. Impact of a 10 km running trial on eryptosis, red blood cell rheology, and electrophysiology in endurance trained athletes: a pilot study. Eur J Appl Physiol. 2020;120(1):255-266. doi:10.1007/s00421-019-04271-x

Liu CH, Tseng YF, Lai JI, et al. The changes of red blood cell viscoelasticity and sports anemia in male 24-hr ultra-marathoners. J Chin Med Assoc. 2018;81(5):475-481. doi:10.1016/j.jcma.2017.09.011

Chiu YH, Lai JI, Wang SH, et al. Early changes of the anemia phenomenon in male 100-km ultramarathoners. J Chin Med Assoc. 2015;78(2):108-113. doi:10.1016/j.jcma.2014.09.004

Bizjak DA, Tomschi F, Bales G, et al. Does endurance training improve red blood cell aging and hemorheology in moderate-trained healthy individuals?. J Sport Health Sci. 2020;9(6):595-603. doi:10.1016/j.jshs.2019.02.002

Nader E, Guillot N, Lavorel L, et al. Eryptosis and hemorheological responses to maximal exercise in athletes: Comparison between running and cycling. Scand J Med Sci Sports. 2018;28(5):1532-1540. doi:10.1111/sms.13059

Nemkov T, Skinner SC, Nader E, et al. Acute Cycling Exercise Induces Changes in Red Blood Cell Deformability and Membrane Lipid Remodeling. Int J Mol Sci. 2021;22(2):896. Published 2021 Jan 18. doi:10.3390/ijms22020896

Mardyła M, Teległów A, Ptaszek B, Jekiełek M, Mańko G, Marchewka J. Effects of Rowing on Rheological Properties of Blood. Int J Environ Res Public Health. 2023;20(6):5159. Published 2023 Mar 15. doi:10.3390/ijerph20065159

Shadiow J, Tarumi T, Dhindsa M, Hunter SD. A Comparison of Blood Viscosity and Hematocrit Levels between Yoga Practitioners and Sedentary Adults. Int J Exerc Sci. 2019;12(2):425-432. Published 2019 Mar 1.

Nader E, Skinner S, Romana M, et al. Blood Rheology: Key Parameters, Impact on Blood Flow, Role in Sickle Cell Disease and Effects of Exercise. Front Physiol. 2019;10:1329. Published 2019 Oct 17. doi:10.3389/fphys.2019.01329

Filar-Mierzwa K, Marchewka A, Dąbrowski Z, Bac A, Marchewka J. Effects of dance movement therapy on the rheological properties of blood in elderly women. Clin Hemorheol Microcirc. 2019;72(2):211-219. doi:10.3233/CH-180470

Brun JF. Exercise hemorheology as a three acts play with metabolic actors: is it of clinical relevance?. Clin Hemorheol Microcirc. 2002;26(3):155-174.

Varlet-Marie E, Gaudard A, Mercier J, Bressolle F, Brun JF. Is the feeling of heavy legs in overtrained athletes related to impaired hemorheology?. Clin Hemorheol Microcirc. 2003;28(3):151-159.

Aïssa Benhaddad A, Bouix D, Khaled S, et al. Early hemorheologic aspects of overtraining in elite athletes. Clin Hemorheol Microcirc. 1999;20(2):117-125.

Smith LL. Cytokine hypothesis of overtraining: a physiological adaptation to excessive stress?. Med Sci Sports Exerc. 2000;32(2):317-331. doi:10.1097/00005768-200002000-00011

Varlet-Marie E, Mercier J, Brun JF. Is plasma viscosity a predictor of overtraining in athletes?. Clin Hemorheol Microcirc. 2006;35(1-2):329-332.

Brun JF, Khaled S, Raynaud E, Bouix D, Micallef JP, Orsetti A. The triphasic effects of exercise on blood rheology: which relevance to physiology and pathophysiology?. Clin Hemorheol Microcirc. 1998;19(2):89-104.

Belviranli M, Okudan N, Kabak B. The Effects of Acute High-Intensity Interval Training on Hematological Parameters in Sedentary Subjects. Med Sci (Basel). 2017;5(3):15. Published 2017 Jul 19. doi:10.3390/medsci5030015

Ahmadizad S, El-Sayed MS, MacLaren DP. Effects of water intake on the responses of haemorheological variables to resistance exercise. Clin Hemorheol Microcirc. 2006;35(1-2):317-327.

Komka Z, Szilágyi B, Molnár D, et al. Exercise-related hemoconcentration and hemodilution in hydrated and dehydrated athletes: An observational study of the Hungarian canoeists. PLoS One. 2022;17(12):e0277978. Published 2022 Dec 30. doi:10.1371/journal.pone.0277978

Brun J, Fons C, Supparo I, Mallard C, Orsetti A. Could exercise-induced increase in blood viscosity at high shear rate be entirely explained by hematocrit and plasma viscosity changes? Clinical Hemorheology and Microcirculation. 1993; 13(2), 187–199. https://doi.org/10.3233/ch-1993-13204

Reinhart WH, Gaudenz R, Walter R. Acidosis induced by lactate, pyruvate, or HCl increases blood viscosity. J Crit Care. 2002;17(1):68-73. doi:10.1053/jcrc.2002.33027

Brun JF, Varlet-Marie E, Cassan D, Raynaud de Mauverger E. Blood rheology and body composition as determinants of exercise performance in female rugby players. Clin Hemorheol Microcirc. 2011;49(1-4):207-214. doi:10.3233/CH-2011-1470

Lipowska MM, Dheyongera G, Sadowska ET, Koteja P. Experimental evolution of aerobic exercise performance and hematological traits in bank voles. Comp Biochem Physiol A Mol Integr Physiol. 2019;234:1-9. doi:10.1016/j.cbpa.2019.04.008

Brun JF, Bouchahda C, Chaze D, Benhaddad AA, Micallef JP, Mercier J. The paradox of hematocrit in exercise physiology: which is the "normal" range from an hemorheologist's viewpoint?. Clin Hemorheol Microcirc. 2000;22(4):287-303.

Nagao N, Imai Y, Arie J, Sawada Y. The Kaike triathletes' hematocrit values. With relation to their competition results. J Sports Med Phys Fitness. 1992;32(2):201-205.

Brun JF, Varlet-Marie E, Romain AJ, Raynaud de Mauverger E. Interrelationships among body composition, blood rheology and exercise performance. Clin Hemorheol Microcirc. 2011;49(1-4):183-197. doi:10.3233/CH-2011-1468

Brun J, Varlet‐Marie E, Myzia J, Vachoud L, Marion B, Roques C, De Mauverger ÉR, Mercier J. Which sub-compartments of fat mass and fat-free mass are related to blood viscosity factors? Clinical Hemorheology and Microcirculation. 2023; 1–8. https://doi.org/10.3233/ch-238118

Brochu M, Mathieu ME, Karelis AD, et al. Contribution of the lean body mass to insulin resistance in postmenopausal women with visceral obesity: a Monet study. Obesity (Silver Spring). 2008;16(5):1085-1093. doi:10.1038/oby.2008.23

Raz O, Rogowski O, Shapira I, Maharshak N, Karni Y, Berliner S. Dissociated effects of physical activity and weight loss on fibrinogen concentrations and markers of red blood cell aggregation. Relevance for life style modification in atherothrombosis. Clin Hemorheol Microcirc. 2007;37(3):253-262.

Brun JF, Varlet-Marie E, Raynaud de Mauverger E, Fedou C, Pollatz M. Hemorheologic effects of low intensity endurance training in type 2 diabetic patients: A pilot study. Clin Hemorheol Microcirc. 2016;61(4):579-589. doi:10.3233/CH-141916

Bouix D, Peyreigne C, Raynaud E, Monnier JF, Micallef JP, Brun JF. Relationships among body composition, hemorheology and exercise performance in rugbymen. Clin Hemorheol Microcirc. 1998;19(3):245-254.

Brun JF, Varlet-Marie E, Fédou C, Raynaud de Mauverger E. One-year follow-up of blood viscosity factors and hematocrit/viscosity ratio in elite soccer players. Clin Hemorheol Microcirc. 2016;64(4):799-808. doi:10.3233/CH-168014

Poiseuille JLM. Recherches sur les causes du mouvement du sang dans les vaisseaux capillaires. Comptes rendus de l'Académie des Sciences. 1835; 1: 554–560.

Tian D, Meng J. Exercise for Prevention and Relief of Cardiovascular Disease: Prognoses, Mechanisms, and Approaches. Oxid Med Cell Longev. 2019;2019:3756750. Published 2019 Apr 9. doi:10.1155/2019/3756750

Soltani M, Aghaei Bahmanbeglou N, Ahmadizad S. High-intensity interval training irrespective of its intensity improves markers of blood fluidity in hypertensive patients. Clin Exp Hypertens. 2020;42(4):309-314. doi:10.1080/10641963.2019.1649687

Radak Z, Chung HY, Goto S. Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic Biol Med. 2008;44(2):153-159. doi:10.1016/j.freeradbiomed.2007.01.029

Lu Y, Wiltshire HD, Baker JS, Wang Q. Effects of High Intensity Exercise on Oxidative Stress and Antioxidant Status in Untrained Humans: A Systematic Review. Biology (Basel). 2021;10(12):1272. Published 2021 Dec 4. doi:10.3390/biology10121272

Grau M, Pauly S, Ali J, et al. RBC-NOS-dependent S-nitrosylation of cytoskeletal proteins improves RBC deformability. PLoS One. 2013;8(2):e56759. doi:10.1371/journal.pone.0056759

Szostak J, Laurant P. The forgotten face of regular physical exercise: a 'natural' anti-atherogenic activity. Clin Sci (Lond). 2011;121(3):91-106. doi:10.1042/CS20100520

Mury P, Chirico EN, Mura M, Millon A, Canet-Soulas E, Pialoux V. Oxidative Stress and Inflammation, Key Targets of Atherosclerotic Plaque Progression and Vulnerability: Potential Impact of Physical Activity. Sports Med. 2018;48(12):2725-2741. doi:10.1007/s40279-018-0996-z

Downloads

  • PDF

Published

2024-09-17

How to Cite

1.
SZPERNALOWSKA, Anna and MARCINKOWSKA-GAPIŃSKA, Anna. Influence of physical activity on the values of hemorheological parameters. Quality in Sport. Online. 17 September 2024. Vol. 22, p. 54476. [Accessed 28 June 2025]. DOI 10.12775/QS.2024.22.54476.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 22 (2024)

Section

Medical Sciences

License

Copyright (c) 2024 Anna Szpernalowska, Anna Marcinkowska-Gapińska

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats

Number of views and downloads: 196
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

exercise, blood viscosity, physical activity, hemorheology
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop