Influence of physical activity on the values of hemorheological parameters
DOI:
https://doi.org/10.12775/QS.2024.22.54476Keywords
exercise, blood viscosity, physical activity, hemorheologyAbstract
Physical activity is a major factor contributing to maintaining overall health and properly functioning circulatory system. One of the underlying mechanisms is modifying blood flow by influencing hemorheological parameters, the most important of which are: hematocrit, plasma viscosity, whole blood viscosity, the ability of red blood cells to aggregate, deform and orient. We conducted a literature review to investigate how different types, intensities and phases of physical activity affect rheological properties of blood. The results show that short-term effects of exercise differ from the long-term consequences and rheology of blood varies depending on strength/endurance type of the training as good as on its regularity and intensity. Findings from this research may be applicable in improving sport’s performance and health maintenance in athletes.
References
Taco-Vasquez ED, Barrera F, Serrano-Duenas M, Jimenez E, Rocuts A, Riveros Perez E. Association between Blood Viscosity and Cardiovascular Risk Factors in Patients with Arterial Hypertension in a High Altitude Setting. Cureus. 2019;11(1):e3925. Published 2019 Jan 21. https://doi:10.7759/cureus.3925
Erdoğa G., Yenerçağ M, Arslan U. The Relationship between Blood Viscosity and Acute Arterial Occlusion. Journal of Cardiovascular Emergencies. 2020; 6(1), 7–12. https://doi.org/10.2478/jce-2020-0002
Baskurt OK, Hardeman MR, Rampling MW. Handbook of Hemorheology and Hemodynamics. IOS Press. 2007
Ernst E. Changes in blood rheology produced by exercise. JAMA. 1985;253(20):2962-2963.
Brun JF, Varlet-Marie E, Romain AJ, Guiraudou M, Raynaud de Mauverger E. Exercise hemorheology: Moving from old simplistic paradigms to a more complex picture. Clin Hemorheol Microcirc. 2013;55(1):15-27. doi:10.3233/CH-131686
Varlet-Marie E, Guiraudou M, Fédou C, Raynaud de Mauverger E, Durand F, Brun JF. Nutritional and metabolic determinants of blood rheology differ between trained and sedentary individuals. Clin Hemorheol Microcirc. 2013;55(1):39-54. doi:10.3233/CH-131688
Ivanov I. Hemorheological Alterations and Physical Activity. Applied Sciences. 2022; 12(20):10374. https://doi.org/10.3390/app122010374
Lerche D, Bäumler H, Kucera W, Meier W, Paulitschke M. Die Fliesseigenschaften von Blut und ihre Charakterisierung mittels hämorheologischer Methoden [The flow properties of blood and their characterization by hemorheologic methods]. Folia Haematol Int Mag Klin Morphol Blutforsch. 1989;116(5):631-652.
Szanto S, Mody T, Gyurcsik Z, et al. Alterations of Selected Hemorheological and Metabolic Parameters Induced by Physical Activity in Untrained Men and Sportsmen. Metabolites. 2021;11(12):870. Published 2021 Dec 14. doi:10.3390/metabo11120870
Robert M, Stauffer E, Nader E, et al. Impact of Trail Running Races on Blood Viscosity and Its Determinants: Effects of Distance. Int J Mol Sci. 2020;21(22):8531. Published 2020 Nov 12. doi:10.3390/ijms21228531
Késmárky G, Kenyeres P, Rábai M, Tóth K. Plasma viscosity: a forgotten variable. Clin Hemorheol Microcirc. 2008;39(1-4):243-246.
Brooks GA, Mercier J. Balance of carbohydrate and lipid utilization during exercise: the "crossover" concept. J Appl Physiol (1985). 1994;76(6):2253-2261. doi:10.1152/jappl.1994.76.6.2253
Brun JF, Varlet-Marie E, Jerome A, Mercier J. Measurement and Physiological Relevance of the Maximal Lipid Oxidation Rate During Exercise (LIPOXmax) [Internet]. An International Perspective on Topics in Sports Medicine and Sports Injury. InTech; 2012. http://dx.doi.org/10.5772/25451
Nader E, Monedero D, Robert M, et al. Impact of a 10 km running trial on eryptosis, red blood cell rheology, and electrophysiology in endurance trained athletes: a pilot study. Eur J Appl Physiol. 2020;120(1):255-266. doi:10.1007/s00421-019-04271-x
Liu CH, Tseng YF, Lai JI, et al. The changes of red blood cell viscoelasticity and sports anemia in male 24-hr ultra-marathoners. J Chin Med Assoc. 2018;81(5):475-481. doi:10.1016/j.jcma.2017.09.011
Chiu YH, Lai JI, Wang SH, et al. Early changes of the anemia phenomenon in male 100-km ultramarathoners. J Chin Med Assoc. 2015;78(2):108-113. doi:10.1016/j.jcma.2014.09.004
Bizjak DA, Tomschi F, Bales G, et al. Does endurance training improve red blood cell aging and hemorheology in moderate-trained healthy individuals?. J Sport Health Sci. 2020;9(6):595-603. doi:10.1016/j.jshs.2019.02.002
Nader E, Guillot N, Lavorel L, et al. Eryptosis and hemorheological responses to maximal exercise in athletes: Comparison between running and cycling. Scand J Med Sci Sports. 2018;28(5):1532-1540. doi:10.1111/sms.13059
Nemkov T, Skinner SC, Nader E, et al. Acute Cycling Exercise Induces Changes in Red Blood Cell Deformability and Membrane Lipid Remodeling. Int J Mol Sci. 2021;22(2):896. Published 2021 Jan 18. doi:10.3390/ijms22020896
Mardyła M, Teległów A, Ptaszek B, Jekiełek M, Mańko G, Marchewka J. Effects of Rowing on Rheological Properties of Blood. Int J Environ Res Public Health. 2023;20(6):5159. Published 2023 Mar 15. doi:10.3390/ijerph20065159
Shadiow J, Tarumi T, Dhindsa M, Hunter SD. A Comparison of Blood Viscosity and Hematocrit Levels between Yoga Practitioners and Sedentary Adults. Int J Exerc Sci. 2019;12(2):425-432. Published 2019 Mar 1.
Nader E, Skinner S, Romana M, et al. Blood Rheology: Key Parameters, Impact on Blood Flow, Role in Sickle Cell Disease and Effects of Exercise. Front Physiol. 2019;10:1329. Published 2019 Oct 17. doi:10.3389/fphys.2019.01329
Filar-Mierzwa K, Marchewka A, Dąbrowski Z, Bac A, Marchewka J. Effects of dance movement therapy on the rheological properties of blood in elderly women. Clin Hemorheol Microcirc. 2019;72(2):211-219. doi:10.3233/CH-180470
Brun JF. Exercise hemorheology as a three acts play with metabolic actors: is it of clinical relevance?. Clin Hemorheol Microcirc. 2002;26(3):155-174.
Varlet-Marie E, Gaudard A, Mercier J, Bressolle F, Brun JF. Is the feeling of heavy legs in overtrained athletes related to impaired hemorheology?. Clin Hemorheol Microcirc. 2003;28(3):151-159.
Aïssa Benhaddad A, Bouix D, Khaled S, et al. Early hemorheologic aspects of overtraining in elite athletes. Clin Hemorheol Microcirc. 1999;20(2):117-125.
Smith LL. Cytokine hypothesis of overtraining: a physiological adaptation to excessive stress?. Med Sci Sports Exerc. 2000;32(2):317-331. doi:10.1097/00005768-200002000-00011
Varlet-Marie E, Mercier J, Brun JF. Is plasma viscosity a predictor of overtraining in athletes?. Clin Hemorheol Microcirc. 2006;35(1-2):329-332.
Brun JF, Khaled S, Raynaud E, Bouix D, Micallef JP, Orsetti A. The triphasic effects of exercise on blood rheology: which relevance to physiology and pathophysiology?. Clin Hemorheol Microcirc. 1998;19(2):89-104.
Belviranli M, Okudan N, Kabak B. The Effects of Acute High-Intensity Interval Training on Hematological Parameters in Sedentary Subjects. Med Sci (Basel). 2017;5(3):15. Published 2017 Jul 19. doi:10.3390/medsci5030015
Ahmadizad S, El-Sayed MS, MacLaren DP. Effects of water intake on the responses of haemorheological variables to resistance exercise. Clin Hemorheol Microcirc. 2006;35(1-2):317-327.
Komka Z, Szilágyi B, Molnár D, et al. Exercise-related hemoconcentration and hemodilution in hydrated and dehydrated athletes: An observational study of the Hungarian canoeists. PLoS One. 2022;17(12):e0277978. Published 2022 Dec 30. doi:10.1371/journal.pone.0277978
Brun J, Fons C, Supparo I, Mallard C, Orsetti A. Could exercise-induced increase in blood viscosity at high shear rate be entirely explained by hematocrit and plasma viscosity changes? Clinical Hemorheology and Microcirculation. 1993; 13(2), 187–199. https://doi.org/10.3233/ch-1993-13204
Reinhart WH, Gaudenz R, Walter R. Acidosis induced by lactate, pyruvate, or HCl increases blood viscosity. J Crit Care. 2002;17(1):68-73. doi:10.1053/jcrc.2002.33027
Brun JF, Varlet-Marie E, Cassan D, Raynaud de Mauverger E. Blood rheology and body composition as determinants of exercise performance in female rugby players. Clin Hemorheol Microcirc. 2011;49(1-4):207-214. doi:10.3233/CH-2011-1470
Lipowska MM, Dheyongera G, Sadowska ET, Koteja P. Experimental evolution of aerobic exercise performance and hematological traits in bank voles. Comp Biochem Physiol A Mol Integr Physiol. 2019;234:1-9. doi:10.1016/j.cbpa.2019.04.008
Brun JF, Bouchahda C, Chaze D, Benhaddad AA, Micallef JP, Mercier J. The paradox of hematocrit in exercise physiology: which is the "normal" range from an hemorheologist's viewpoint?. Clin Hemorheol Microcirc. 2000;22(4):287-303.
Nagao N, Imai Y, Arie J, Sawada Y. The Kaike triathletes' hematocrit values. With relation to their competition results. J Sports Med Phys Fitness. 1992;32(2):201-205.
Brun JF, Varlet-Marie E, Romain AJ, Raynaud de Mauverger E. Interrelationships among body composition, blood rheology and exercise performance. Clin Hemorheol Microcirc. 2011;49(1-4):183-197. doi:10.3233/CH-2011-1468
Brun J, Varlet‐Marie E, Myzia J, Vachoud L, Marion B, Roques C, De Mauverger ÉR, Mercier J. Which sub-compartments of fat mass and fat-free mass are related to blood viscosity factors? Clinical Hemorheology and Microcirculation. 2023; 1–8. https://doi.org/10.3233/ch-238118
Brochu M, Mathieu ME, Karelis AD, et al. Contribution of the lean body mass to insulin resistance in postmenopausal women with visceral obesity: a Monet study. Obesity (Silver Spring). 2008;16(5):1085-1093. doi:10.1038/oby.2008.23
Raz O, Rogowski O, Shapira I, Maharshak N, Karni Y, Berliner S. Dissociated effects of physical activity and weight loss on fibrinogen concentrations and markers of red blood cell aggregation. Relevance for life style modification in atherothrombosis. Clin Hemorheol Microcirc. 2007;37(3):253-262.
Brun JF, Varlet-Marie E, Raynaud de Mauverger E, Fedou C, Pollatz M. Hemorheologic effects of low intensity endurance training in type 2 diabetic patients: A pilot study. Clin Hemorheol Microcirc. 2016;61(4):579-589. doi:10.3233/CH-141916
Bouix D, Peyreigne C, Raynaud E, Monnier JF, Micallef JP, Brun JF. Relationships among body composition, hemorheology and exercise performance in rugbymen. Clin Hemorheol Microcirc. 1998;19(3):245-254.
Brun JF, Varlet-Marie E, Fédou C, Raynaud de Mauverger E. One-year follow-up of blood viscosity factors and hematocrit/viscosity ratio in elite soccer players. Clin Hemorheol Microcirc. 2016;64(4):799-808. doi:10.3233/CH-168014
Poiseuille JLM. Recherches sur les causes du mouvement du sang dans les vaisseaux capillaires. Comptes rendus de l'Académie des Sciences. 1835; 1: 554–560.
Tian D, Meng J. Exercise for Prevention and Relief of Cardiovascular Disease: Prognoses, Mechanisms, and Approaches. Oxid Med Cell Longev. 2019;2019:3756750. Published 2019 Apr 9. doi:10.1155/2019/3756750
Soltani M, Aghaei Bahmanbeglou N, Ahmadizad S. High-intensity interval training irrespective of its intensity improves markers of blood fluidity in hypertensive patients. Clin Exp Hypertens. 2020;42(4):309-314. doi:10.1080/10641963.2019.1649687
Radak Z, Chung HY, Goto S. Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic Biol Med. 2008;44(2):153-159. doi:10.1016/j.freeradbiomed.2007.01.029
Lu Y, Wiltshire HD, Baker JS, Wang Q. Effects of High Intensity Exercise on Oxidative Stress and Antioxidant Status in Untrained Humans: A Systematic Review. Biology (Basel). 2021;10(12):1272. Published 2021 Dec 4. doi:10.3390/biology10121272
Grau M, Pauly S, Ali J, et al. RBC-NOS-dependent S-nitrosylation of cytoskeletal proteins improves RBC deformability. PLoS One. 2013;8(2):e56759. doi:10.1371/journal.pone.0056759
Szostak J, Laurant P. The forgotten face of regular physical exercise: a 'natural' anti-atherogenic activity. Clin Sci (Lond). 2011;121(3):91-106. doi:10.1042/CS20100520
Mury P, Chirico EN, Mura M, Millon A, Canet-Soulas E, Pialoux V. Oxidative Stress and Inflammation, Key Targets of Atherosclerotic Plaque Progression and Vulnerability: Potential Impact of Physical Activity. Sports Med. 2018;48(12):2725-2741. doi:10.1007/s40279-018-0996-z
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Anna Szpernalowska, Anna Marcinkowska-Gapińska
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 53
Number of citations: 0