Hair Graying: Mechanisms, Prevention, and Innovative Treatment Strategies – literature review
DOI:
https://doi.org/10.12775/QS.2024.22.54296Keywords
hair, melanogenesis, oxidative stressAbstract
Hair graying, or canities, is a complex biological process characterized by the progressive loss of hair pigment, often leading to aesthetic and psychological concerns. This review delves into the multifactorial nature of hair graying, examining the underlying biochemical and physiological mechanisms. Key contributors include oxidative stress, genetic and environmental factors, and disturbances in melanogenesis and signaling pathways such as Notch and Kit. Our extensive literature review from PubMed, involving 33 scientifically rigorous papers, explores the efficiency of various strategies aimed at delaying or preventing hair graying. We highlight the roles of antioxidants, lifestyle modifications, and advanced therapeutic approaches like genetic therapy and liposome delivery systems. Additionally, we explore the impact of diet and UV protection, among other factors, on maintaining hair pigmentation. This review underscores the intricate interplay of biochemical processes in hair graying and sheds light on promising interventions for managing this natural yet often unwelcome sign of aging.
References
Liang A, Fang Y, Ye L, et al. Signaling pathways in hair aging. Front Cell Dev Biol. 2023;11:1278278. doi:10.3389/fcell.2023.1278278
Seiberg M. Age‐induced hair greying – the multiple effects of oxidative stress. Intern J of Cosmetic Sci. 2013;35(6):532-538. doi:10.1111/ics.12090
Trueb R. Oxidative stress in ageing of hair. Int J Trichol. 2009;1(1):6. doi:10.4103/0974-7753.51923
Ungvari A, Kiss T, Gulej R, et al. Irradiation-induced hair graying in mice: an experimental model to evaluate the effectiveness of interventions targeting oxidative stress, DNA damage prevention, and cellular senescence. GeroScience. 2024;46(3):3105-3122. doi:10.1007/s11357-023-01042-7
Zhang B, Ma S, Rachmin I, et al. Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature. 2020;577(7792):676-681. doi:10.1038/s41586-020-1935-3
Acer E, Kaya Erdoğan H, İğrek A, Parlak H, Saraçoğlu ZN, Bilgin M. Relationship between diet, atopy, family history, and premature hair graying. J of Cosmetic Dermatology. 2019;18(2):665-670. doi:10.1111/jocd.12840
Wood JM, Decker H, Hartmann H, et al. Senile hair graying: H 2 O 2 ‐mediated oxidative stress affects human hair color by blunting methionine sulfoxide repair. FASEB j. 2009;23(7):2065-2075. doi:10.1096/fj.08-125435
Aoki H, Hara A, Motohashi T, Kunisada T. Protective Effect of Kit Signaling for Melanocyte Stem Cells against Radiation-Induced Genotoxic Stress. Journal of Investigative Dermatology. 2011;131(9):1906-1915. doi:10.1038/jid.2011.148
Liu X, Lv X, Ji T, Hu H, Chang L. Gynostemma pentaphyllum Makino extract induces hair growth and exhibits an anti‐graying effect via multiple mechanisms. J of Cosmetic Dermatology. 2024;23(2):648-657. doi:10.1111/jocd.15963
Zhao P, Park NH, Alam MB, Lee SH. Fuzhuan Brick Tea Boosts Melanogenesis and Prevents Hair Graying through Reduction of Oxidative Stress via NRF2-HO-1 Signaling. Antioxidants. 2022;11(3):599. doi:10.3390/antiox11030599
Taguchi N, Hata T, Kamiya E, et al. Eriodictyon angustifolium extract, but not Eriodictyon californicum extract, reduces human hair greying. Intern J of Cosmetic Sci. 2020;42(4):336-345. doi:10.1111/ics.12620
Kang S, Kim M. Spermidine promotes melanin production through an MITF signalling pathway. Cell Biochemistry & Function. 2021;39(4):536-545. doi:10.1002/cbf.3619
Park W seok, Kwon O, Yoon TJ, Chung JH. Anti-graying effect of the extract of Pueraria thunbergiana via upregulation of cAMP/MITF-M signaling pathway. Journal of Dermatological Science. 2014;75(2):153-155. doi:10.1016/j.jdermsci.2014.05.003
Yamauchi K, Mitsunaga T. Methylquercetins stimulate melanin biosynthesis in a three-dimensional skin model. J Nat Med. 2018;72(2):563-569. doi:10.1007/s11418-018-1175-0
Gáspár E, Nguyen-Thi KT, Hardenbicker C, et al. Thyrotropin-Releasing Hormone Selectively Stimulates Human Hair Follicle Pigmentation. Journal of Investigative Dermatology. 2011;131(12):2368-2377. doi:10.1038/jid.2011.221
Chourasia R, Jain S. Drug Targeting Through Pilosebaceous Route. CDT. 2009;10(10):950-967. doi:10.2174/138945009789577918
Ciotti SN, Weiner N. FOLLICULAR LIPOSOMAL DELIVERY SYSTEMS. Journal of Liposome Research. 2002;12(1-2):143-148. doi:10.1081/LPR-120004787
Van Neste D, Tobin DJ. Hair cycle and hair pigmentation: dynamic interactions and changes associated with aging. Micron. 2004;35(3):193-200. doi:10.1016/j.micron.2003.11.006
Sikkink SK, Mine S, Freis O, Danoux L, Tobin DJ. Stress-sensing in the human greying hair follicle: Ataxia Telangiectasia Mutated (ATM) depletion in hair bulb melanocytes in canities-prone scalp. Sci Rep. 2020;10(1):18711. doi:10.1038/s41598-020-75334-9
Jadkauskaite L, Coulombe PA, Schäfer M, Dinkova‐Kostova AT, Paus R, Haslam IS. Oxidative stress management in the hair follicle: Could targeting NRF2 counter age‐related hair disorders and beyond? BioEssays. 2017;39(8):1700029. doi:10.1002/bies.201700029
Li X, Shi R, Yan L, et al. Natural product rhynchophylline prevents stress-induced hair graying by preserving melanocyte stem cells via the β2 adrenergic pathway suppression. Nat Prod Bioprospect. 2023;13(1):54. doi:10.1007/s13659-023-00421-z
Sextius P, Betts R, Benkhalifa I, et al. Polygonum multiflorum Radix extract protects human foreskin melanocytes from oxidative stress in vitro and potentiates hair follicle pigmentation ex vivo. Intern J of Cosmetic Sci. 2017;39(4):419-425. doi:10.1111/ics.12391
Campiche R, Daniltchenko M, Imfeld D, Peters EMJ. Effects of the selective TrkA agonist gambogic amide on pigmentation and growth of human hair follicles in vitro. Hou L, ed. PLoS ONE. 2019;14(8):e0221757. doi:10.1371/journal.pone.0221757
Emerit I, Filipe P, Freitas J, Vassy J. Protective Effect of Superoxide Dismutase Against Hair Graying in a Mouse Model¶. Photochem Photobiol. 2004;80(3):579. doi:10.1562/0031-8655(2004)080<0579:PEOSDA>2.0.CO;2
Tr�eb RM. Pharmacologic interventions in aging hair. Clinical Interventions in Aging. 2006;1(2):121-129. doi:10.2147/ciia.2006.1.2.121
Dong D, Chen S, Feng C, Xiong H, Xu X. NB-UVB Induces Melanocytic Differentiation of Human Hair Follicle Neural Crest Stem Cells. Ann Dermatol. 2020;32(4):289. doi:10.5021/ad.2020.32.4.289
Yardman‐Frank JM, Fisher DE. Skin pigmentation and its control: From ultraviolet radiation to stem cells. Experimental Dermatology. 2021;30(4):560-571. doi:10.1111/exd.14260
Noppakun N, Swasdikul D. Reversible hyperpigmentation of skin and nails with white hair due to vitamin B12 deficiency. Arch Dermatol. 1986;122(8):896-899.
Kumar A, Shamim H, Nagaraju U. Premature graying of hair: Review with updates. Int J Trichol. 2018;10(5):198. doi:10.4103/ijt.ijt_47_18
Sato S, Jitsukawa K, Sato H, et al. Segmented heterochromia in black scalp hair associated with iron-deficiency anemia. Canities segmentata sideropaenica. Arch Dermatol. 1989;125(4):531-535.
Yale K, Juhasz M, Atanaskova Mesinkovska N. Medication-Induced Repigmentation of Gray Hair: A Systematic Review. Skin Appendage Disord. 2020;6(1):1-10. doi:10.1159/000504414
Rojo de la Vega M, Zhang DD, Wondrak GT. Topical Bixin Confers NRF2-Dependent Protection Against Photodamage and Hair Graying in Mouse Skin. Front Pharmacol. 2018;9:287. doi:10.3389/fphar.2018.00287
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Monika Kienanh Do, Karolina Kazimierska, Dominika Zaliwska, Adrianna Kraszkiewicz, Natalia Paduszyńska, Marta Justyna Gonciarz, Dominika Karolina Adamiec, Anna Dąbrowska, Monika Anna Kamińska, Magdalena Czach
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 303
Number of citations: 0