The Impact of Air Pollution on Atopic Dermatitis. Literature review
DOI:
https://doi.org/10.12775/QS.2024.22.54273Keywords
air pollution, atopic dermatitis, skinAbstract
Introduction and purpose
The rising level of air pollution is currently a serious worldwide problem. Airborne pollutants, such as PM, O3, CO, NOx, SO₂, and heavy metals, negatively impact the entire body, contributing to the dysfunction of many systems. The aim of this study was to review the literature on the impact of selected air pollutants on the development or exacerbation of atopic dermatitis, and to elucidate the mechanisms responsible for this.
Materials and methods
The literature available in PubMed and Google Scholar databases was reviewed using the keywords: “air pollution”, “atopic dermatitis”, “skin lesions”.
Description of the state of knowledge
Available studies have provided information on the significant impact of air pollution on the development and exacerbation of atopic dermatitis. Air pollutants can induce skin changes through various mechanisms, such as damage to the epidermal barrier, disruption of skin microflora, oxidative stress, initiation of inflammatory responses, or activation of the aryl hydrocarbon receptor pathway.
Conclusions
Reducing air pollution is crucial for improving overall public health and decreasing the incidence of many diseases, including atopic dermatitis. Further research is needed to deepen the understanding of the relationship between air pollution and atopic dermatitis, as well as the mechanisms responsible for it, and to develop effective strategies for protecting the skin from pollutants.
References
Carvalho H. Air pollution-related deaths in Europe - time for action. J Glob Health. 2019 Dec;9(2):020308. doi: 10.7189/jogh.09.020308.
Maione M, Mocca E, Eisfeld K, Kazepov Y, Fuzzi S. Public perception of air pollution sources across Europe. Ambio. 2021 Jun;50(6):1150-1158. doi: 10.1007/s13280-020-01450-5.
Czarnobilska E., Bulanda M., Myszkowska D., Leśniak M., Czarnobilska M., Mazur M., Influence of air pollution on the increase of allergic diseases Medical Review 2017, 11(74), 575-580, Polish.
Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. Environmental and Health Impacts of Air Pollution: A Review. Front Public Health. 2020 Feb 20;8:14. doi: 10.3389/fpubh.2020.00014.
Roberts W. Air pollution and skin disorders. Int J Womens Dermatol. 2020; 25;7(1):91-97. doi: 10.1016/j.ijwd.2020.11.001.
Fadadu RP, Abuabara K, Balmes JR, Hanifin JM, Wei ML. Air Pollution and Atopic Dermatitis, from Molecular Mechanisms to Population-Level Evidence: A Review. Int J Environ Res Public Health. 2023 Jan 31;20(3):2526. doi: 10.3390/ijerph20032526.
Kim J, Kim BE, Leung DYM. Pathophysiology of atopic dermatitis: Clinical implications. Allergy Asthma Proc. 2019;1;40(2):84-92. doi: 10.2500/aap.2019.40.4202.
Gupta R, Sheikh A, Strachan DP, Anderson HR. Burden of allergic disease in the UK: secondary analyses of national databases. Clin Exp Allergy. 2004 Apr;34(4):520-6. doi: 10.1111/j.1365-2222.2004.1935.x.
Wakamatsu TH, Dogru M, Ayako I, Takano Y, Matsumoto Y, Ibrahim OM, Okada N, Satake Y, Fukagawa K, Shimazaki J, Tsubota K, Fujishima H. Evaluation of lipid oxidative stress status and inflammation in atopic ocular surface disease. Mol Vis. 2010 Nov 19;16:2465-75.
Ji H, Li XK. Oxidative Stress in Atopic Dermatitis. Oxid Med Cell Longev. 2016;2016:2721469. doi: 10.1155/2016/2721469.
Lai A, Owens K, Patel S, Nicholas M. The Impact of Air Pollution on Atopic Dermatitis. Curr Allergy Asthma Rep. 2023 Aug;23(8):435-442. doi: 10.1007/s11882-023-01095-w.
Luo P, Wang D, Luo J, Li S, Li MM, Chen H, Duan Y, Fan J, Cheng Z, Zhao MM, Liu X, Wang H, Luo XY, Zhou L. Relationship between air pollution and childhood atopic dermatitis in Chongqing, China: A time-series analysis. Front Public Health. 2022; 6;10:990464. doi: 10.3389/fpubh.2022.990464.
Wang HL, Sun J, Qian ZM, Gong YQ, Zhong JB, Yang RD, Wan CL, Zhang SQ, Ning DF, Xian H, Chang JJ, Wang CJ, Shacham E, Wang JQ, Lin HL. Association between air pollution and atopic dermatitis in Guangzhou, China: modification by age and season. Br J Dermatol. 2021 Jun;184(6):1068-1076. doi: 10.1111/bjd.19645.
Gu X, Jing D, Xiao Y, Zhou G, Yang S, Liu H, Chen X, Shen M. Association of air pollution and genetic risks with incidence of elderly-onset atopic dermatitis: A prospective cohort study. Ecotoxicol Environ Saf. 2023 Mar 15;253:114683. doi: 10.1016/j.ecoenv.2023.114683.
Ye C, Gu H, Li M, Chen R, Xiao X, Zou Y. Air Pollution and Weather Conditions Are Associated with Daily Outpatient Visits of Atopic Dermatitis in Shanghai, China. Dermatology. 2022;238(5):939-949. doi: 10.1159/000522491.
Gu X, Li Z, Su J. Air pollution and skin diseases: A comprehensive evaluation of the associated mechanism. Ecotoxicol Environ Saf. 2024 Jun 15;278:116429. doi: 10.1016/j.ecoenv.2024.116429.
Wang L, Xu YN, Chu CC, Jing Z, Chen Y, Zhang J, Pu M, Mi T, Du Y, Liang Z, Doraiswamy C, Zeng T, Wu J, Chen L. Facial Skin Microbiota-Mediated Host Response to Pollution Stress Revealed by Microbiome Networks of Individual. mSystems. 2021 Aug 31;6(4):e0031921. doi: 10.1128/mSystems.00319-21.
Gupta N, Yadav VK, Gacem A, Al-Dossari M, Yadav KK, Abd El-Gawaad NS, Ben Khedher N, Choudhary N, Kumar P, Cavalu S. Deleterious Effect of Air Pollution on Human Microbial Community and Bacterial Flora: A Short Review. Int J Environ Res Public Health. 2022 Nov 22;19(23):15494. doi: 10.3390/ijerph192315494.
Janvier X, Alexandre S, Boukerb AM, Souak D, Maillot O, Barreau M, Gouriou F, Grillon C, Feuilloley MGJ, Groboillot A. Deleterious Effects of an Air Pollutant (NO2) on a Selection of Commensal Skin Bacterial Strains, Potential Contributor to Dysbiosis? Front Microbiol. 2020 Dec 8;11:591839. doi: 10.3389/fmicb.2020.591839.
Leung, M.H.Y., Tong, X., Bastien, P. et al. Changes of the human skin microbiota upon chronic exposure to polycyclic aromatic hydrocarbon pollutants. Microbiome 8, 100 (2020). https://doi.org/10.1186/s40168-020-00874-1
Wullaert A, Bonnet MC, Pasparakis M. NF-κB in the regulation of epithelial homeostasis and inflammation. Cell Res. 2011 Jan;21(1):146-58. doi: 10.1038/cr.2010.175.
Eberlein-König B, Przybilla B, Kühnl P, Pechak J, Gebefügi I, Kleinschmidt J, Ring J. Influence of airborne nitrogen dioxide or formaldehyde on parameters of skin function and cellular activation in patients with atopic eczema and control subjects. J Allergy Clin Immunol. 1998 Jan;101(1 Pt 1):141-3. doi: 10.1016/S0091-6749(98)70212-X.
Kim J, Han Y, Ahn JH, Kim SW, Lee SI, Lee KH, Ahn K. Airborne formaldehyde causes skin barrier dysfunction in atopic dermatitis. Br J Dermatol. 2016 Aug;175(2):357-63. doi: 10.1111/bjd.14357.
Fadadu RP, Abuabara K, Balmes JR, Hanifin JM, Wei ML. Air Pollution and Atopic Dermatitis, from Molecular Mechanisms to Population-Level Evidence: A Review. Int J Environ Res Public Health. 2023 Jan 31;20(3):2526. doi: 10.3390/ijerph20032526
Jinnestål CL, Belfrage E, Bäck O, Schmidtchen A, Sonesson A. Skin barrier impairment correlates with cutaneous Staphylococcus aureus colonization and sensitization to skin-associated microbial antigens in adult patients with atopic dermatitis. Int J Dermatol. 2014 Jan;53(1):27-33. doi: 10.1111/ijd.12198.
Zhong Y, Samuel M, van Bever H, Tham EH. Emollients in infancy to prevent atopic dermatitis: A systematic review and meta-analysis. Allergy. 2022 Jun;77(6):1685-1699. doi: 10.1111/all.15116.
Salvati L, Cosmi L, Annunziato F. From Emollients to Biologicals: Targeting Atopic Dermatitis. Int J Mol Sci. 2021 Sep 26;22(19):10381. doi: 10.3390/ijms221910381.
Raimondo A, Serio B, Lembo S. Oxidative Stress in Atopic Dermatitis and Possible Biomarkers: Present and Future. Indian J Dermatol. 2023 Nov-Dec;68(6):657-660. doi: 10.4103/ijd.ijd_878_22.
Niwa Y, Sumi H, Kawahira K, Terashima T, Nakamura T, Akamatsu H. Protein oxidative damage in the stratum corneum: Evidence for a link between environmental oxidants and the changing prevalence and nature of atopic dermatitis in Japan. Br J Dermatol. 2003 Aug;149(2):248-54. doi: 10.1046/j.1365-2133.2003.05417.x.
Bertino L, Guarneri F, Cannavò SP, Casciaro M, Pioggia G, Gangemi S. Oxidative Stress and Atopic Dermatitis. Antioxidants (Basel). 2020 Feb 26;9(3):196. doi: 10.3390/antiox9030196.
Liu, T., Zhang, L., Joo, D. et al. NF-κB signaling in inflammation. Sig Transduct Target Ther 2, 17023 (2017). https://doi.org/10.1038/sigtrans.2017.23
Kim HB, Choi MG, Chung BY, Um JY, Kim JC, Park CW, Kim HO. Particulate matter 2.5 induces the skin barrier dysfunction and cutaneous inflammation via AhR- and T helper 17 cell-related genes in human skin tissue as identified via transcriptome analysis. Exp Dermatol. 2023 Apr;32(4):547-554. doi: 10.1111/exd.14724.
Afaq F, Zaid MA, Pelle E, Khan N, Syed DN, Matsui MS, Maes D, Mukhtar H. Aryl hydrocarbon receptor is an ozone sensor in human skin. J Invest Dermatol. 2009 Oct;129(10):2396-403. doi: 10.1038/jid.2009.85.
Furue M, Hashimoto-Hachiya A, Tsuji G. Aryl Hydrocarbon Receptor in Atopic Dermatitis and Psoriasis. Int J Mol Sci. 2019 Oct 31;20(21):5424. doi: 10.3390/ijms20215424.
Peppers J, Paller AS, Maeda-Chubachi T, Wu S, Robbins K, Gallagher K, Kraus JE. A phase 2, randomized dose-finding study of tapinarof (GSK2894512 cream) for the treatment of atopic dermatitis. J Am Acad Dermatol. 2019 Jan;80(1):89-98.e3. doi: 10.1016/j.jaad.2018.06.047.
Keam SJ. Tapinarof Cream 1%: First Approval. Drugs. 2022 Jul;82(11):1221-1228. doi: 10.1007/s40265-022-01748-6.
Yi O, Kwon HJ, Kim H, Ha M, Hong SJ, Hong YC, Leem JH, Sakong J, Lee CG, Kim SY, Kang D. Effect of environmental tobacco smoke on atopic dermatitis among children in Korea. Environ Res. 2012 Feb;113:40-5. doi: 10.1016/j.envres.2011.12.012.
Herberth G, Bauer M, Gasch M, Hinz D, Röder S, Olek S, Kohajda T, Rolle-Kampczyk U, von Bergen M, Sack U, Borte M, Lehmann I; Lifestyle and Environmental Factors and Their Influence on Newborns Allergy Risk study group. Maternal and cord blood miR-223 expression associates with prenatal tobacco smoke exposure and low regulatory T-cell numbers. J Allergy Clin Immunol. 2014 Feb;133(2):543-50. doi: 10.1016/j.jaci.2013.06.036.
Choi HS, Suh MJ, Hong SC, Kang JW. The Association between the Concentration of Heavy Metals in the Indoor Atmosphere and Atopic Dermatitis Symptoms in Children Aged between 4 and 13 Years: A Pilot Study. Children (Basel). 2021 Nov 3;8(11):1004. doi: 10.3390/children8111004.
Pesce G, Sesé L, Calciano L, Travert B, Dessimond B, Maesano CN, Ferrante G, Huel G, Prud'homme J, Guinot M, Soomro MH, Baloch RM, Lhote R, Annesi-Maesano I. Foetal exposure to heavy metals and risk of atopic diseases in early childhood. Pediatr Allergy Immunol. 2021 Feb;32(2):242-250. doi: 10.1111/pai.13397.
Minang JT, Areström I, Zuber B, Jönsson G, Troye-Blomberg M, Ahlborg N. Nickel-induced IL-10 down-regulates Th1- but not Th2-type cytokine responses to the contact allergen nickel. Clin Exp Immunol. 2006 Mar;143(3):494-502. doi: 10.1111/j.1365-2249.2006.03018.x.
Podobas EI, Gutowska-Owsiak D, Moretti S, Poznański J, Kulińczak M, Grynberg M, Gruca A, Bonna A, Płonka D, Frączyk T, Ogg G, Bal W. Ni2+-Assisted Hydrolysis May Affect the Human Proteome; Filaggrin Degradation Ex Vivo as an Example of Possible Consequences. Front Mol Biosci. 2022 Mar 10;9:828674. doi: 10.3389/fmolb.2022.828674. Erratum in: Front Mol Biosci. 2022 Dec 12;9:1101224. doi: 10.3389/fmolb.2022.1101224.
Yang H, Chen JS, Zou WJ, Tan Q, Xiao YZ, Luo XY, Gao P, Fu Z, Wang H. Vitamin A deficiency exacerbates extrinsic atopic dermatitis development by potentiating type 2 helper T cell-type inflammation and mast cell activation. Clin Exp Allergy. 2020 Aug;50(8):942-953. doi: 10.1111/cea.13687.
Peroni DG, Hufnagl K, Comberiati P, Roth-Walter F. Lack of iron, zinc, and vitamins as a contributor to the etiology of atopic diseases. Front Nutr. 2023 Jan 9;9:1032481. doi: 10.3389/fnut.2022.1032481.
Wang Z, Zhang M. Smoking and the risk of atopic dermatitis: A two-sample mendelian randomization study. Medicine (Baltimore). 2023 Nov 10;102(45):e36050. doi: 10.1097/MD.0000000000036050.
Mu Z, Zhang J. The Role of Genetics, the Environment, and Epigenetics in Atopic Dermatitis. Adv Exp Med Biol. 2020;1253:107-140. doi: 10.1007/978-981-15-3449-2_4.
Wang J, Yin J, Hong X, Liu R. Exposure to Heavy Metals and Allergic Outcomes in Children: a Systematic Review and Meta-analysis. Biol Trace Elem Res. 2022 Nov;200(11):4615-4631. doi: 10.1007/s12011-021-03070-w.
Arnson Y, Shoenfeld Y, Amital H. Effects of tobacco smoke on immunity, inflammation and autoimmunity. J Autoimmun. 2010 May;34(3):J258-65. doi:10.1016/j.jaut.2009.12.003.
Glossop JR, Dawes PT, Mattey DL. Association between cigarette smoking and release of tumour necrosis factor alpha and its soluble receptors by peripheral blood mononuclear cells in patients with rheumatoid arthritis. Rheumatology (Oxford). 2006 Oct;45(10):1223-9. doi: 10.1093/rheumatology/kel094.
Ahmed NJ, Husen AZ, Khoshnaw N, Getta HA, Hussein ZS, Yassin AK, Jalal SD, Mohammed RN, Alwan AF. The Effects of Smoking on IgE, Oxidative Stress and Haemoglobin Concentration. Asian Pac J Cancer Prev. 2020 Apr 1;21(4):1069-1072. doi: 10.31557/APJCP.2020.21.4.1069.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Natalia Dolata, Bartosz Balcer, Katarzyna Kuleta
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 54
Number of citations: 0