Methods of lowering the glycemic index of food and their underlying mechanisms - a review
DOI:
https://doi.org/10.12775/QS.2024.20.54118Keywords
glycemic index, GI, postprandial glucose level, type 2 diabetes mellitus, metabolic diseaseAbstract
Introduction and purpose of review: The term glycemic index (GI) is the measure of how much a specific substance increases the postprandial blood glucose level [1]. Substances with lower GI promote a lower glycemic response and are said to promote satiety, postprandial insulin secretion and maintain insulin sensitivity and therefore help to control blood glucose concentrations [2]. According to guidelines on the management of patients with diabetes, type 2 diabetes mellitus patients’ source of carbohydrates in diet should be whole grain cereal products especially with low GI [3].
Type 2 diabetes is a chronic, metabolic disease occurring mostly in adults. It leads to numerous chronic complications that include e.g. macroangiopathy, retinopathy, nephropathy, neuropathy and diabetic foot as well as vulnerability to infections [2]. These complications lower the quality of life, generate costs when treating them and eventually lead to death.
Currently there are about 422 million people with diabetes worldwide and the number is expected to rise [3]. Therefore it is crucial for patients to maintain their blood glucose at stable levels to prevent progression of the disease and its complications. The glycemic response can be modified by implementing a low GI diet. The aim of this study is to provide an overview of selected strategies lowering the glycemic index and the probable mechanisms by which they work.
Methods: For this review, articles in the Pubmed and Google Scholar databases were analyzed as well as the references of previously found articles.
Current state of knowledge: Existing studies show that some strategies alter the glycemic index and glycemic response that can help diabetic patients to better control their glucose blood level.
Summary: This review summarizes studies concerning methods of lowering the glycemic index and mechanisms of action of those specific methods.
References
Jenkins DJ, Wolever TM, Taylor RH, et al. Glycemic index of foods: a physiological basis for carbohydrate exchange. The American Journal of Clinical Nutrition. 1981;34(3):362-366. doi:https://doi.org/10.1093/ajcn/34.3.362
Brand-Miller JC, Holt SH, Pawlak DB, McMillan J. Glycemic index and obesity. The American Journal of Clinical Nutrition. 2002;76(1):281S-5S. doi:https://doi.org/10.1093/ajcn/76/1.281S
Araszkiewicz A, Bandurska-Stankiewicz E, Borys S, et al. 2021 Guidelines on the management of patients with diabetes. A position of Diabetes Poland. Clinical Diabetology. 2021;10(1):1-113. doi:https://doi.org/10.5603/dk.2021.0001
P, Damaskos C, Garmpis N, Garmpi A, Savvanis S, Diamantis E. Complications of the Type 2 Diabetes Mellitus. Current Cardiology Reviews. 2020;16(4):249-251. doi:https://doi.org/10.2174/1573403x1604201229115531
World Health Organization. Diabetes. World Health Organization. Published 2024. https://www.who.int/health-topics/diabetes#tab=tab_1
Esfahani A, Wong JMW, Mirrahimi A, Srichaikul K, Jenkins DJA, Kendall CWC. The Glycemic Index: Physiological Significance. Journal of the American College of Nutrition. 2009;28(sup4):439S445S. doi:https://doi.org/10.1080/07315724.2009.10718109
Iso.org. Published 2021. https://www.iso.org/obp/ui/#iso:std:iso:26642:ed-1:v1:en
Canadian Diabetes Association Clinical Practice Guidelines Expert Committee, Cheng AYY. Canadian Diabetes Association 2013 clinical practice guidelines for the prevention and management of diabetes in Canada. Introduction. Canadian journal of diabetes. 2013;37 Suppl 1:S1-3. doi:https://doi.org/10.1016/j.jcjd.2013.01.009
Atkinson FS, Brand-Miller JC, Foster-Powell K, Buyken AE, Goletzke J. International tables of glycemic index and glycemic load values 2021: a systematic review. The American Journal of Clinical Nutrition. 2021;114(5). doi:https://doi.org/10.1093/ajcn/nqab233
Zheng Y, Ley SH, Hu FB. Global Aetiology and Epidemiology of Type 2 Diabetes Mellitus and Its Complications. Nature Reviews Endocrinology. 2018;14(2):88-98. doi:https://doi.org/10.1038/nrendo.2017.151
Vijan S. Type 2 Diabetes. Annals of Internal Medicine. 2010;152(5):ITC3-1. doi:https://doi.org/10.7326/0003-4819-152-5-201003020-01003
International Diabetes Federation. IDF Diabetes Atlas 10th edition 2021. IDF Diabetes Atlas. Published 2022. https://diabetesatlas.org/
Vlachos D, Malisova S, Lindberg FA, Karaniki G. Glycemic Index (GI) or Glycemic Load (GL) and Dietary Interventions for Optimizing Postprandial Hyperglycemia in Patients with T2 Diabetes: A Review. Nutrients. 2020;12(6):1561. Published 2020 May 27. doi:10.3390/nu12061561
Toh DWK, Koh ES, Kim JE. Lowering breakfast glycemic index and glycemic load attenuates postprandial glycemic response: A systematically searched meta-analysis of randomized controlled trials. Nutrition. 2019;71:110634. doi:https://doi.org/10.1016/j.nut.2019.110634
Augustin LSA, Kendall CWC, Jenkins DJA, et al. Glycemic index, glycemic load and glycemic response: An International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutrition, Metabolism and Cardiovascular Diseases. 2015;25(9):795-815. doi:https://doi.org/10.1016/j.numecd.2015.05.005
Santos HO, de Moraes WMAM, da Silva GAR, Prestes J, Schoenfeld BJ. Vinegar (acetic acid) intake on glucose metabolism: A narrative review. Clinical Nutrition ESPEN. 2019;32:1-7. doi:https://doi.org/10.1016/j.clnesp.2019.05.008
Noh YH, Lee DB, Lee YW, Pyo YH. In Vitro Inhibitory Effects of Organic Acids Identified in Commercial Vinegars on α-Amylase and α-Glucosidase. Preventive Nutrition and Food Science. 2020;25(3):319-324. doi:https://doi.org/10.3746/pnf.2020.25.3.319
Marunaka Y. The Proposal of Molecular Mechanisms of Weak Organic Acids Intake-Induced Improvement of Insulin Resistance in Diabetes Mellitus via Elevation of Interstitial Fluid pH. International Journal of Molecular Sciences. 2018;19(10):3244. doi:https://doi.org/10.3390/ijms19103244
Johnston CS, Buller AJ. Vinegar and Peanut Products as Complementary Foods to Reduce Postprandial Glycemia. Journal of the American Dietetic Association. 2005;105(12):1939-1942. doi:https://doi.org/10.1016/j.jada.2005.07.012
Liatis S, Grammatikou S, Poulia K-A, et al. Vinegar reduces postprandial hyperglycaemia in patients with type II diabetes when added to a high, but not to a low, glycaemic index meal. European Journal of Clinical Nutrition. 2010;64(7):727-732. doi:https://doi.org/10.1038/ejcn.2010.89
Sugiyama M, Tang AC, Wakaki Y, Koyama W. Glycemic index of single and mixed meal foods among common Japanese foods with white rice as a reference food. European Journal of Clinical Nutrition. 2003;57(6):743-752. doi:https://doi.org/10.1038/sj.ejcn.1601606
Brighenti F, Castellani G, Benini L, et al. Effect of neutralized and native vinegar on blood glucose and acetate responses to a mixed meal in healthy subjects. European Journal of Clinical Nutrition. 1995;49(4):242-247. https://pubmed.ncbi.nlm.nih.gov/7796781/
Chen H, Chen T, Giudici P, Chen F. Vinegar Functions on Health: Constituents, Sources, and Formation Mechanisms. Comprehensive Reviews in Food Science and Food Safety. 2016;15(6):1124-1138. doi:https://doi.org/10.1111/1541-4337.12228
Lim J, Henry CJ, Haldar S. Vinegar as a functional ingredient to improve postprandial glycemic control-human intervention findings and molecular mechanisms. Molecular Nutrition & Food Research. 2016;60(8):1837-1849. doi:https://doi.org/10.1002/mnfr.201600121
Hu GX, Chen GR, Xu H, Ge RS, Lin J. Activation of the AMP activated protein kinase by short-chain fatty acids is the main mechanism underlying the beneficial effect of a high fiber diet on the metabolic syndrome. Medical Hypotheses. 2010;74(1):123-126. doi:https://doi.org/10.1016/j.mehy.2009.07.022
Viollet B, Guigas B, Leclerc J, et al. AMP-activated protein kinase in the regulation of hepatic energy metabolism: from physiology to therapeutic perspectives. Acta Physiologica. 2009;196(1):81-98. doi:https://doi.org/10.1111/j.1748-1716.2009.01970.x
Kondo T, Kishi M, Fushimi T, Kaga T. Acetic acid upregulates the expression of genes for fatty acid oxidation enzymes in liver to suppress body fat accumulation. Journal of agricultural and food chemistry. 2009;57(13):5982-5986. doi:https://doi.org/10.1021/jf900470c
Lhotta K, Höfle G, Gasser R, Finkenstedt G. Hypokalemia, Hyperreninemia and Osteoporosis in a Patient Ingesting Large Amounts of Cider Vinegar. Nephron. 1998;80(2):242-243. doi:https://doi.org/10.1159/000045180
Bhattarai RR, Dhital S, Wu P, Chen XD, Gidley MJ. Digestion of isolated legume cells in a stomach-duodenum model: three mechanisms limit starch and protein hydrolysis. Food & Function. 2017;8(7):2573-2582. doi:https://doi.org/10.1039/c7fo00086c
Dhital S, Bhattarai RR, Gorham J, Gidley MJ. Intactness of cell wall structure controls the in vitro digestion of starch in legumes. Food & Function. 2016;7(3):1367-1379. doi:https://doi.org/10.1039/c5fo01104c
Zhou X, Ying Y, Hu B, Pang Y, Bao J. Physicochemical properties and digestibility of endosperm starches in four indica rice mutants. Carbohydrate Polymers. 2018;195:1-8. doi:https://doi.org/10.1016/j.carbpol.2018.04.070
Ebbeling CB, Ludwig DS. Treating obesity in youth: should dietary glycemic load be a consideration? Advances in Pediatrics. 2001;48:179-212. Accessed May 5, 2024. https://pubmed.ncbi.nlm.nih.gov/11480757/
MacIntosh CG, Holt SHA, Brand-Miller JC. The Degree of Fat Saturation Does Not Alter Glycemic, Insulinemic or Satiety Responses to a Starchy Staple in Healthy Men. The Journal of Nutrition. 2003;133(8):2577-2580. doi:https://doi.org/10.1093/jn/133.8.2577
Holland C, Ryden P, Edwards CH, Grundy MM. Plant Cell Walls: Impact on Nutrient Bioaccessibility and Digestibility. Foods. 2020;9(2):201. Published 2020 Feb 16. doi:10.3390/foods9020201
Giuntini EB, Sardá FAH, de Menezes EW. The Effects of Soluble Dietary Fibers on Glycemic Response: An Overview and Futures Perspectives. Foods. 2022;11(23):3934. Published 2022 Dec 6. doi:10.3390/foods11233934
Lobos DR, Vicuña IA, Novik V, Vega CA. Effect of high and low glycemic index breakfast on postprandial metabolic parameters and satiety in subjects with type 2 diabetes mellitus under intensive insulin therapy: Controlled clinical trial. Clinical Nutrition ESPEN. 2017;20:12-16. doi:https://doi.org/10.1016/j.clnesp.2017.04.082
Murillo S, Mallol A, Adot A, et al. Culinary strategies to manage glycemic response in people with type 2 diabetes: A narrative review. Frontiers in Nutrition. 2022;9. doi:https://doi.org/10.3389/fnut.2022.1025993
Hermansen K, Rasmussen O, Gregersen S, Larsen S. Influence of Ripeness of Banana on the Blood Glucose and Insulin Response in Type 2 Diabetic Subjects. Diabetic Medicine. 1992;9(8):739-743. doi:https://doi.org/10.1111/j.1464-5491.1992.tb01883.x
Ratnayake WS, Jackson DS. Chapter 5 Starch Gelatinization. Advances in Food and Nutrition Research. 2008;55:221-268. doi:https://doi.org/10.1016/s1043-4526(08)00405-1
Do MH, Lee HB, Lee E, Park HY. The Effects of Gelatinized Wheat Starch and High Salt Diet on Gut Microbiota and Metabolic Disorder. Nutrients. 2020;12(2):301. Published 2020 Jan 22. doi:10.3390/nu12020301
Bahado-Singh PS, Riley CK, Wheatley AO, Lowe HIC. Relationship between Processing Method and the Glycemic Indices of Ten Sweet Potato (Ipomoea batatas) Cultivars Commonly Consumed in Jamaica. Journal of Nutrition and Metabolism. 2011;2011:1-6. doi:https://doi.org/10.1155/2011/584832
Harasym J, Olędzki R. Comparison of Conventional and Microwave Assisted Heating on Carbohydrate Content, Antioxidant Capacity and Postprandial Glycemic Response in Oat Meals. Nutrients. 2018;10(2):207. Published 2018 Feb 14. doi:10.3390/nu10020207
Burton P, Lightowler HJ. The impact of freezing and toasting on the glycaemic response of white bread. European Journal of Clinical Nutrition. 2007;62(5):594-599.
Shukla AP, Dickison M, Coughlin N, et al. The impact of food order on postprandial glycaemic excursions in prediabetes. Diabetes, Obesity and Metabolism. 2018;21(2):377-381. doi:https://doi.org/10.1111/dom.13503
NISHINO K, SAKURAI M, TAKESHITA Y, TAKAMURA T. Consuming Carbohydrates after Meat or Vegetables Lowers Postprandial Excursions of Glucose and Insulin in Nondiabetic Subjects. Journal of Nutritional Science and Vitaminology. 2018;64(5):316-320. doi:https://doi.org/10.3177/jnsv.64.316
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Patrycja Sornek, Wiktoria Izdebska, Jakub Stanek, Klaudia Perkowska, Anna Kaźmierczak, Anna Mich, Igor Pawlak, Agata Borkowska, Radosław Ciesielski, Anna Kiełb
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 114
Number of citations: 0