A Gut microbiota and rheumatic diseases: new insights into pathogenesis
DOI:
https://doi.org/10.12775/QS.2024.18.53972Keywords
rheumatic diseases, gut microbiota, rheumatoid arthritis, spondylitis, arthritis, systemic lupus erythematosus, systemic scleroderma, Sjögren's syndromeAbstract
Background: Rheumatic diseases are a group of disorders characterised by a loss of immune tolerance, which leads to chronic inflammation, degeneration or metabolic abnormalities in various organs or tissues. Despite the lack of clarity surrounding the causes of these diseases, both environmental and genetic factors play an important role. Recent research indicates that alterations in the composition of the gut microbiota, known as gut dysbiosis, may contribute to the development of a number of rheumatic diseases, including rheumatoid arthritis, systemic lupus, ankylosing spondylitis, systemic scleroderma and Sjögren's syndrome. The gut microbiota influences the balance between pro- and anti-inflammatory immune responses, which may have important implications for the pathogenesis of these diseases. Furthermore, studies have indicated that the composition of the gut microbiota may be associated with the response to therapies used to treat rheumatic diseases, thus opening up new avenues for the development of microbiota-targeted treatments for these conditions. Aim of the study: The objective of this review is to investigate the impact of the gut microbiota on the pathogenesis of rheumatic diseases and to evaluate potential therapies targeting the manipulation of the gut microbiota. Material and methods: The present study is based on literature available in scientific databases from 2019-2024, such as PubMed, Corchane Library and Google Scholar.Results and conclusions: A growing body of evidence suggests a potential link between the gut microbiota and rheumatic diseases. Patients often exhibit a reduced ratio of Firmicutes to Bacteroidetes and abnormal numbers of Bacteroides. Molecular mimicry and a potential association with short-chain fatty acids have also been observed. Further human studies are needed to more fully understand the role of the gut microbiota and potential therapeutic interventions.
References
R. L. Brown, M. L. Yeung Larkinson, and T. B. Clarke, “Immunological design of commensal communities to treat intestinal infection and inflammation,” PLoS Pathog, vol. 17, no. 1, p. e1009191, Jan. 2021, doi: 10.1371/JOURNAL.PPAT.1009191.
H. Xu et al., “Interactions between Gut Microbiota and Immunomodulatory Cells in Rheumatoid Arthritis,” Mediators Inflamm, vol. 2020, 2020, doi: 10.1155/2020/1430605.
Y. Yao, X. Cai, Y. Ye, F. Wang, F. Chen, and C. Zheng, “The Role of Microbiota in Infant Health: From Early Life to Adulthood,” Front Immunol, vol. 12, p. 708472, Oct. 2021, doi: 10.3389/FIMMU.2021.708472/BIBTEX.
R. Yacoub, A. Jacob, J. Wlaschin, M. McGregor, R. J. Quigg, and J. J. Alexander, “Lupus: The microbiome angle,” Immunobiology, vol. 223, no. 6–7, pp. 460–465, Jun. 2018, doi: 10.1016/J.IMBIO.2017.11.004.
P. Paone and P. D. Cani, “Mucus barrier, mucins and gut microbiota: the expected slimy partners?,” Gut, vol. 69, no. 12, pp. 2232–2243, Dec. 2020, doi: 10.1136/GUTJNL-2020-322260.
Q. Guan, “A Comprehensive Review and Update on the Pathogenesis of Inflammatory Bowel Disease,” J Immunol Res, vol. 2019, 2019, doi: 10.1155/2019/7247238.
B. Zhou et al., “Intestinal Flora and Disease Mutually Shape the Regional Immune System in the Intestinal Tract,” Front Immunol, vol. 11, p. 512969, Apr. 2020, doi: 10.3389/FIMMU.2020.00575/BIBTEX.
H. Kayama, R. Okumura, and K. Takeda, “Interaction between the Microbiota, Epithelia, and Immune Cells in the Intestine,” Annu Rev Immunol, vol. 38, no. Volume 38, 2020, pp. 23–48, Apr. 2020, doi: 10.1146/ANNUREV-IMMUNOL-070119-115104/CITE/REFWORKS.
L. Wang, L. Zhu, and S. Qin, “Gut Microbiota Modulation on Intestinal Mucosal Adaptive Immunity,” J Immunol Res, vol. 2019, no. 1, p. 4735040, Jan. 2019, doi: 10.1155/2019/4735040.
S. Ghosh, C. S. Whitley, B. Haribabu, and V. R. Jala, “Regulation of Intestinal Barrier Function by Microbial Metabolites,” Cell Mol Gastroenterol Hepatol, vol. 11, no. 5, pp. 1463–1482, Jan. 2021, doi: 10.1016/J.JCMGH.2021.02.007.
E. Gianchecchi and A. Fierabracci, “Recent Advances on Microbiota Involvement in the Pathogenesis of Autoimmunity,” International Journal of Molecular Sciences 2019, Vol. 20, Page 283, vol. 20, no. 2, p. 283, Jan. 2019, doi: 10.3390/IJMS20020283.
A. Kalinkovich and G. Livshits, “A cross talk between dysbiosis and gut-associated immune system governs the development of inflammatory arthropathies,” Semin Arthritis Rheum, vol. 49, no. 3, pp. 474–484, Dec. 2019, doi: 10.1016/J.SEMARTHRIT.2019.05.007.
S. Nell, S. Suerbaum, and C. Josenhans, “The impact of the microbiota on the pathogenesis of IBD: lessons from mouse infection models,” Nat Rev Microbiol, vol. 8, no. 8, pp. 564–577, Aug. 2010, doi: 10.1038/NRMICRO2403.
M. Durazzo, A. Ferro, and G. Gruden, “Gastrointestinal Microbiota and Type 1 Diabetes Mellitus: The State of Art,” J Clin Med, vol. 8, no. 11, Nov. 2019, doi: 10.3390/JCM8111843.
D. N. Fredricks, “The gut microbiota and graft-versus-host disease,” J Clin Invest, vol. 129, no. 5, p. 1808, May 2019, doi: 10.1172/JCI125797.
C. Amoroso, F. Perillo, F. Strati, M. C. Fantini, F. Caprioli, and F. Facciotti, “The Role of Gut Microbiota Biomodulators on Mucosal Immunity and Intestinal Inflammation,” Cells 2020, Vol. 9, Page 1234, vol. 9, no. 5, p. 1234, May 2020, doi: 10.3390/CELLS9051234.
F. Di Vincenzo, A. Del Gaudio, V. Petito, L. R. Lopetuso, and F. Scaldaferri, “Gut microbiota, intestinal permeability, and systemic inflammation: a narrative review,” Intern Emerg Med, vol. 19, no. 2, pp. 275–293, Mar. 2024, doi: 10.1007/S11739-023-03374-W/FIGURES/2.
G. Alsaleh, F. C. Richter, and A. K. Simon, “Age-related mechanisms in the context of rheumatic disease,” Nature Reviews Rheumatology 2022 18:12, vol. 18, no. 12, pp. 694–710, Nov. 2022, doi: 10.1038/s41584-022-00863-8.
L. Zhang and C. Q. Chu, “Gut Microbiota–Medication Interaction in Rheumatic Diseases,” Front Immunol, vol. 12, p. 796865, Dec. 2021, doi: 10.3389/FIMMU.2021.796865/BIBTEX.
G. Kwao-Zigah et al., “Microbiome Dysbiosis, Dietary Intake and Lifestyle-Associated Factors Involve in Epigenetic Modulations in Colorectal Cancer: A Narrative Review,” Cancer Control, vol. 31, Jan. 2024, doi: 10.1177/10732748241263650.
Y. Tong, T. Marion, G. Schett, Y. Luo, and Y. Liu, “Microbiota and metabolites in rheumatic diseases,” Autoimmun Rev, vol. 19, no. 8, p. 102530, Aug. 2020, doi: 10.1016/j.autrev.2020.102530.
M. Beukema, M. M. Faas, and P. de Vos, “The effects of different dietary fiber pectin structures on the gastrointestinal immune barrier: impact via gut microbiota and direct effects on immune cells,” Experimental & Molecular Medicine 2020 52:9, vol. 52, no. 9, pp. 1364–1376, Sep. 2020, doi: 10.1038/s12276-020-0449-2.
Y. Li, J. Du, and W. Wei, “Emerging Roles of Mucosal-Associated Invariant T Cells in Rheumatology,” Front Immunol, vol. 13, p. 819992, Mar. 2022, doi: 10.3389/FIMMU.2022.819992/BIBTEX.
E. M. Brown, D. J. Kenny, and R. J. Xavier, “Gut Microbiota Regulation of T Cells During Inflammation and Autoimmunity,” Annu Rev Immunol, vol. 37, pp. 599–624, Apr. 2019, doi: 10.1146/ANNUREV-IMMUNOL-042718-041841.
U. Roy et al., “Induction of IL-22-Producing CD4+ T Cells by Segmented Filamentous Bacteria Independent of Classical Th17 Cells,” Front Immunol, vol. 12, p. 671331, Sep. 2021, doi: 10.3389/FIMMU.2021.671331/BIBTEX.
D. Zhong, C. Wu, X. Zeng, and Q. Wang, “The role of gut microbiota in the pathogenesis of rheumatic diseases,” Clin Rheumatol, vol. 37, no. 1, pp. 25–34, Jan. 2018, doi: 10.1007/S10067-017-3821-4.
H. Chen, L. Wang, X. Wang, X. Wang, H. Liu, and Y. Yin, “Distribution and Strain Diversity of Immunoregulating Segmented Filamentous Bacteria in Human Intestinal Lavage Samples,” Microb Ecol, vol. 79, no. 4, pp. 1021–1033, May 2020, doi: 10.1007/S00248-019-01441-4/METRICS.
L. A. Oemcke, R. C. Anderson, E. Altermann, N. C. Roy, and W. C. McNabb, “The Role of Segmented Filamentous Bacteria in Immune Barrier Maturation of the Small Intestine at Weaning,” Front Nutr, vol. 8, p. 759137, Nov. 2021, doi: 10.3389/FNUT.2021.759137/BIBTEX.
S. Topi et al., “Biomolecular Mechanisms of Autoimmune Diseases and Their Relationship with the Resident Microbiota: Friend or Foe?,” Pathophysiology 2022, Vol. 29, Pages 507-536, vol. 29, no. 3, pp. 507–536, Sep. 2022, doi: 10.3390/PATHOPHYSIOLOGY29030041.
C. H. Kim, “Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids,” Cellular & Molecular Immunology 2021 18:5, vol. 18, no. 5, pp. 1161–1171, Apr. 2021, doi: 10.1038/s41423-020-00625-0.
L. Lin et al., “Gut microbiota in pre-clinical rheumatoid arthritis: From pathogenesis to preventing progression,” J Autoimmun, vol. 141, p. 103001, Dec. 2023, doi: 10.1016/J.JAUT.2023.103001.
F. Golpour et al., “Short chain fatty acids, a possible treatment option for autoimmune diseases,” Biomedicine & Pharmacotherapy, vol. 163, p. 114763, Jul. 2023, doi: 10.1016/J.BIOPHA.2023.114763.
A. Haghikia et al., “Propionate attenuates atherosclerosis by immune-dependent regulation of intestinal cholesterol metabolism,” Eur Heart J, vol. 43, no. 6, pp. 518–533, Feb. 2022, doi: 10.1093/EURHEARTJ/EHAB644.
M. Luu et al., “The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes,” Nature Communications 2019 10:1, vol. 10, no. 1, pp. 1–12, Feb. 2019, doi: 10.1038/s41467-019-08711-2.
E. Rosser, C. Piper, D. Matei, P. B.-C. metabolism, and undefined 2020, “Microbiota-derived metabolites suppress arthritis by amplifying aryl-hydrocarbon receptor activation in regulatory B cells,” cell.comEC Rosser, CJM Piper, DE Matei, PA Blair, AF Rendeiro, M Orford, DG Alber, T KrausgruberCell metabolism, 2020•cell.com, Accessed: Jun. 20, 2024. [Online]. Available: https://www.cell.com/cell-metabolism/pdf/S1550-4131(20)30118-2.pdf
Z. feng Lu et al., “Exploring the significance of microbiota metabolites in rheumatoid arthritis: uncovering their contribution from disease development to biomarker potential,” APMIS, vol. 132, no. 6, pp. 382–415, Jun. 2024, doi: 10.1111/APM.13401.
A. Korzeniowska and E. Bryl, “Infectious and Commensal Bacteria in Rheumatoid Arthritis—Role in the Outset and Progression of the Disease,” International Journal of Molecular Sciences 2024, Vol. 25, Page 3386, vol. 25, no. 6, p. 3386, Mar. 2024, doi: 10.3390/IJMS25063386.
M. K. Demoruelle, T. M. Wilson, and K. D. Deane, “Lung inflammation in the pathogenesis of rheumatoid arthritis,” Immunol Rev, vol. 294, no. 1, pp. 124–132, Mar. 2020, doi: 10.1111/IMR.12842.
V. C. Willis et al., “Sputum Autoantibodies in Patients With Established Rheumatoid Arthritis and Subjects at Risk of Future Clinically Apparent Disease,” Arthritis Rheum, vol. 65, no. 10, pp. 2545–2554, Oct. 2013, doi: 10.1002/ART.38066.
S. Kadura and G. Raghu, “Rheumatoid arthritis-interstitial lung disease: manifestations and current concepts in pathogenesis and management,” European Respiratory Review, vol. 30, no. 160, Jun. 2021, doi: 10.1183/16000617.0011-2021.
J. U. Scher et al., “The lung microbiota in early rheumatoid arthritis and autoimmunity,” Microbiome, vol. 4, no. 1, p. 60, Nov. 2016, doi: 10.1186/S40168-016-0206-X/FIGURES/4.
W. Ratajczak, A. Rył, A. Mizerski, K. Walczakiewicz, O. Sipak, and M. Laszczyńska, “Immunomodulatory potential of gut microbiome-derived shortchain fatty acids (SCFAs),” Acta Biochimica Polonica, vol. 66, no. 1. Acta Biochimica Polonica, pp. 1–12, 2019. doi: 10.18388/abp.2018_2648.
L. Alcaide-Ruggiero, V. Molina-Hernández, M. M. Granados, and J. M. Domínguez, “Main and Minor Types of Collagens in the Articular Cartilage: The Role of Collagens in Repair Tissue Evaluation in Chondral Defects,” International Journal of Molecular Sciences 2021, Vol. 22, Page 13329, vol. 22, no. 24, p. 13329, Dec. 2021, doi: 10.3390/IJMS222413329.
M. Miyoshi and S. Liu, “Collagen-Induced Arthritis Models,” Methods in Molecular Biology, vol. 2766, pp. 3–7, 2024, doi: 10.1007/978-1-0716-3682-4_1.
C. Zhou et al., “Metagenomic profiling of the pro-inflammatory gut microbiota in ankylosing spondylitis,” J Autoimmun, vol. 107, p. 102360, Feb. 2020, doi: 10.1016/J.JAUT.2019.102360.
B. Liang et al., “The autoantibody response to cyclic citrullinated collagen type II peptides in rheumatoid arthritis,” Rheumatology, vol. 58, no. 9, pp. 1623–1633, Sep. 2019, doi: 10.1093/RHEUMATOLOGY/KEZ073.
Y. Ito et al., “Detection of T cell responses to a ubiquitous cellular protein in autoimmune disease,” Science (1979), vol. 346, no. 6207, pp. 363–368, Oct. 2014, doi: 10.1126/SCIENCE.1259077/SUPPL_FILE/ITO.SM.PDF.
N. Garabatos and P. Santamaria, “Gut Microbial Antigenic Mimicry in Autoimmunity,” Front Immunol, vol. 13, p. 873607, Apr. 2022, doi: 10.3389/FIMMU.2022.873607/BIBTEX.
A. Pianta et al., “Two rheumatoid arthritis–specific autoantigens correlate microbial immunity with autoimmune responses in joints,” J Clin Invest, vol. 127, no. 8, pp. 2946–2956, Aug. 2017, doi: 10.1172/JCI93450.
B. Lucchino, F. R. Spinelli, C. Iannuccelli, M. P. Guzzo, F. Conti, and M. Di Franco, “Mucosa–Environment Interactions in the Pathogenesis of Rheumatoid Arthritis,” Cells 2019, Vol. 8, Page 700, vol. 8, no. 7, p. 700, Jul. 2019, doi: 10.3390/CELLS8070700.
X. M. Luo et al., “Gut Microbiota in Human Systemic Lupus Erythematosus and a Mouse Model of Lupus,” Appl Environ Microbiol, vol. 84, no. 4, Feb. 2018, doi: 10.1128/AEM.02288-17.
D. S. Kim, Y. Park, J. W. Choi, S. H. Park, M. La Cho, and S. K. Kwok, “Lactobacillus acidophilus Supplementation Exerts a Synergistic Effect on Tacrolimus Efficacy by Modulating Th17/Treg Balance in Lupus-Prone Mice via the SIGNR3 Pathway,” Front Immunol, vol. 12, Dec. 2021, doi: 10.3389/FIMMU.2021.696074.
Q. Mu et al., “Control of lupus nephritis by changes of gut microbiota,” Microbiome, vol. 5, no. 1, p. 73, Jul. 2017, doi: 10.1186/S40168-017-0300-8.
H. He et al., “Sodium Butyrate Ameliorates Gut Microbiota Dysbiosis in Lupus-Like Mice,” Front Nutr, vol. 7, Nov. 2020, doi: 10.3389/FNUT.2020.604283.
H. Wang et al., “Aberrant Gut Microbiome Contributes to Intestinal Oxidative Stress, Barrier Dysfunction, Inflammation and Systemic Autoimmune Responses in MRL/lpr Mice,” Front Immunol, vol. 12, Apr. 2021, doi: 10.3389/FIMMU.2021.651191.
L. Abdelhamid et al., “Retinoic Acid Exerts Disease Stage-Dependent Effects on Pristane-Induced Lupus,” Front Immunol, vol. 11, Mar. 2020, doi: 10.3389/FIMMU.2020.00408.
S. C. Choi et al., “Gut microbiota dysbiosis and altered tryptophan catabolism contribute to autoimmunity in lupus-susceptible mice,” Sci Transl Med, vol. 12, no. 551, Jul. 2020, doi: 10.1126/SCITRANSLMED.AAX2220.
Y. Ma, X. Xu, M. Li, J. Cai, Q. Wei, and H. Niu, “Gut microbiota promote the inflammatory response in the pathogenesis of systemic lupus erythematosus,” Mol Med, vol. 25, no. 1, Aug. 2019, doi: 10.1186/S10020-019-0102-5.
Y. Ma et al., “Lupus gut microbiota transplants cause autoimmunity and inflammation,” Clin Immunol, vol. 233, Dec. 2021, doi: 10.1016/J.CLIM.2021.108892.
X. Wang, Q. Shu, L. Song, Q. Liu, X. Qu, and M. Li, “Gut Microbiota in Systemic Lupus Erythematosus and Correlation With Diet and Clinical Manifestations,” Front Med (Lausanne), vol. 9, Jun. 2022, doi: 10.3389/FMED.2022.915179.
M. Guo et al., “Alteration in gut microbiota is associated with dysregulation of cytokines and glucocorticoid therapy in systemic lupus erythematosus,” Gut Microbes, vol. 11, no. 6, pp. 1758–1773, Nov. 2020, doi: 10.1080/19490976.2020.1768644.
Y. Li et al., “Disordered intestinal microbes are associated with the activity of Systemic Lupus Erythematosus,” Clin Sci (Lond), vol. 133, no. 7, pp. 821–838, Apr. 2019, doi: 10.1042/CS20180841.
J. Qin et al., “A human gut microbial gene catalogue established by metagenomic sequencing,” Nature, vol. 464, no. 7285, pp. 59–65, 2010, doi: 10.1038/NATURE08821.
J. He et al., “Microbiome and Metabolome Analyses Reveal the Disruption of Lipid Metabolism in Systemic Lupus Erythematosus,” Front Immunol, vol. 11, Jul. 2020, doi: 10.3389/FIMMU.2020.01703.
M. A. Gerges, N. E. Esmaeel, W. K. Makram, D. M. Sharaf, and M. G. Gebriel, “Altered Profile of Fecal Microbiota in Newly Diagnosed Systemic Lupus Erythematosus Egyptian Patients,” Int J Microbiol, vol. 2021, 2021, doi: 10.1155/2021/9934533.
T. A. van der Meulen et al., “Shared gut, but distinct oral microbiota composition in primary Sjögren’s syndrome and systemic lupus erythematosus,” J Autoimmun, vol. 97, pp. 77–87, Feb. 2019, doi: 10.1016/J.JAUT.2018.10.009.
D. Azzouz et al., “Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal,” Ann Rheum Dis, vol. 78, no. 7, pp. 947–956, Jul. 2019, doi: 10.1136/ANNRHEUMDIS-2018-214856.
H. Bagavant et al., “Immune Response to Enterococcus gallinarum in Lupus Patients Is Associated With a Subset of Lupus-Associated Autoantibodies,” Front Immunol, vol. 12, May 2021, doi: 10.3389/FIMMU.2021.635072.
F. Liu et al., “Distinct Microbiomes of Gut and Saliva in Patients With Systemic Lupus Erythematous and Clinical Associations,” Front Immunol, vol. 12, Jul. 2021, doi: 10.3389/FIMMU.2021.626217.
S. Xiang et al., “Association between systemic lupus erythematosus and disruption of gut microbiota: a meta-analysis,” Lupus Sci Med, vol. 9, no. 1, Mar. 2022, doi: 10.1136/LUPUS-2021-000599.
C. Bellocchi et al., “Microbial and metabolic multi-omic correlations in systemic sclerosis patients,” Ann N Y Acad Sci, vol. 1421, no. 1, pp. 97–109, Jun. 2018, doi: 10.1111/NYAS.13736.
G. Natalello et al., “Gut microbiota analysis in systemic sclerosis according to disease characteristics and nutritional status,” Clin Exp Rheumatol, vol. 38, pp. S73–S84, 2020, Accessed: Jun. 21, 2024. [Online]. Available: https://www.clinexprheumatol.org/abstract.asp?a=15489
E. R. Volkmann et al., “Systemic sclerosis is associated with specific alterations in gastrointestinal microbiota in two independent cohorts,” BMJ Open Gastroenterol, vol. 4, no. 1, p. e000134, Apr. 2017, doi: 10.1136/BMJGAST-2017-000134.
D. R. Plichta et al., “Congruent microbiome signatures in fibrosis-prone autoimmune diseases: IgG4-related disease and systemic sclerosis,” Genome Med, vol. 13, no. 1, Dec. 2021, doi: 10.1186/S13073-021-00853-7.
V. Patrone et al., “Gut microbiota profile in systemic sclerosis patients with and without clinical evidence of gastrointestinal involvement,” Sci Rep, vol. 7, no. 1, Dec. 2017, doi: 10.1038/S41598-017-14889-6.
C. Zhou et al., “Metagenomic profiling of the pro-inflammatory gut microbiota in ankylosing spondylitis,” J Autoimmun, vol. 107, Feb. 2020, doi: 10.1016/J.JAUT.2019.102360.
G. Liu, Y. Hao, Q. Yang, and S. Deng, “The Association of Fecal Microbiota in Ankylosing Spondylitis Cases with C-Reactive Protein and Erythrocyte Sedimentation Rate,” Mediators Inflamm, vol. 2020, 2020, doi: 10.1155/2020/8884324.
M. Li et al., “Altered Bacterial-Fungal Interkingdom Networks in the Guts of Ankylosing Spondylitis Patients,” mSystems, vol. 4, no. 2, Apr. 2019, doi: 10.1128/MSYSTEMS.00176-18.
M. Berland et al., “Both Disease Activity and HLA–B27 Status Are Associated With Gut Microbiome Dysbiosis in Spondyloarthritis Patients,” Arthritis and Rheumatology, vol. 75, no. 1, pp. 41–52, Jan. 2023, doi: 10.1002/ART.42289/ABSTRACT.
T. A. van der Meulen et al., “Shared gut, but distinct oral microbiota composition in primary Sjögren’s syndrome and systemic lupus erythematosus,” J Autoimmun, vol. 97, pp. 77–87, Feb. 2019, doi: 10.1016/J.JAUT.2018.10.009.
J. Moon, S. H. Choi, C. H. Yoon, and M. K. Kim, “Gut dysbiosis is prevailing in Sjögren’s syndrome and is related to dry eye severity,” PLoS One, vol. 15, no. 2, p. e0229029, Feb. 2020, doi: 10.1371/JOURNAL.PONE.0229029.
X. miao Jia et al., “Compositional and functional aberrance of the gut microbiota in treatment-naïve patients with primary Sjögren’s syndrome,” J Autoimmun, vol. 141, p. 103050, Dec. 2023, doi: 10.1016/J.JAUT.2023.103050.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Aldona Pażyra, Katarzyna Nowakowska, Piotr Więsyk, Łucja Oklecińska
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 141
Number of citations: 0