Stem Cell Therapy for Hashimoto's Disease - a Promising Treatment Method?
DOI:
https://doi.org/10.12775/QS.2024.21.53856Keywords
stem cells, immune response, mesenchymal stem cells (MSC), MSC transplantation, hematopoietic stem cells (HSCs), immunomodulatory therapies, regenerative medicine, Hashimoto's diseaseAbstract
Hashimoto's disease, an autoimmune disorder characterized by chronic inflammation and progressive destruction of the thyroid gland, leads to hypothyroidism and a range of metabolic disturbances. Conventional treatments primarily focus on hormone replacement therapy, which does not address the underlying autoimmune mechanisms. Stem cell therapy has emerged as a potential revolutionary treatment for Hashimoto's disease, aiming to regenerate thyroid tissue and modulate the immune response. This abstract explores the potential of stem cell therapy in restoring thyroid function and reducing autoimmune activity. Preclinical studies using animal models and in vitro human cell studies have demonstrated promising results, showing that stem cells can reduce thyroid inflammation, promote tissue regeneration, and restore hormone production. Early-phase clinical trials are underway to assess the safety and efficacy of mesenchymal stem cells (MSCs) and other stem cell types in patients with Hashimoto's disease. Despite the promise, challenges such as immune rejection, ethical considerations, regulatory hurdles, and cost must be addressed. Ongoing research and technological advancements hold the potential to transform the treatment landscape for Hashimoto's disease, offering hope for improved outcomes and quality of life for patients.
References
, 168 Capuzzo, A. M. (2021). Hashimoto’s Thyroiditis Autoimmune Disease: Background and Current Status, Update Overview of Biotechnological and Biomedical Fields and Future Trends for 3D Models. https://doi.org/10.20944/PREPRINTS202108.0180.V1
Takasu, N., & Noh, J. Y. (2008). Hashimoto’s thyroiditis: TGAb, TPOAb, TRAb and recovery from hypothyroidism. Expert Review of Clinical Immunology, 4(2), 221–237. https://doi.org/10.1586/1744666X.4.2.221
Weetman, A. P. (2021). An update on the pathogenesis of Hashimoto’s thyroiditis. Journal of Endocrinological Investigation, 44(5), 883–890. https://doi.org/10.1007/S40618-020-01477-1
Adisuhanto, M., Steffanus, M., Tirtadjaja, D. A., Yuwono, A., Alexander, L., Melissa, P., Santoso, A., Kristianti, E., & Antowi, A. (2023). Evans Syndrome and Hashimoto’s Thyroiditis in Pregnancy: A Case Report. Journal of Medical and Health Studies, 4(1), 61–64. https://doi.org/10.32996/JMHS.2023.4.1.7
Takasu, N., & Noh, J. Y. (2008). Hashimoto’s thyroiditis: TGAb, TPOAb, TRAb and recovery from hypothyroidism. Expert Review of Clinical Immunology, 4(2), 221–237. https://doi.org/10.1586/1744666X.4.2.221
Oueslati, I., Salhi, S., Yazidi, M., Chaker, F., & Chihaoui, M. (2022). A case of Hashimoto’s thyroiditis following Graves’ disease. Clinical Case Reports, 10(10), e6466. https://doi.org/10.1002/CCR3.6466
Shirasawa, T., Carlos, L., & Cobos, A. (2023). ES Journal of Case Reports Cytokine-Induced Neurogenesis and Angiogenesis Reversed Cognitive Decline in a Vascular Dementia Patient with Hashimoto’s Thyroiditis Case Report. https://doi.org/10.59152/ESJCR/1036
Patil, B. S., Patil, S., & Gururaj, T. R. (2011). Probable autoimmune causal relationship between periodontitis and Hashimotos thyroidits: A systemic review. Nigerian Journal of Clinical Practice, 14(3), 253–261. https://doi.org/10.4103/1119-3077.86763
Banaszczyk, K., Maliszewska, A., & Owsiany, M. (2019). The role of selenium in the treatment of Hashimoto’s disease. Pediatria i Medycyna Rodzinna, 15(2), 125–130. https://doi.org/10.15557/PIMR.2019.0021
Ma, R., Morshed, S. A., Latif, R., & Davies, T. F. (2021). A Stem Cell Surge During Thyroid Regeneration. Frontiers in Endocrinology, 11, 606269. https://doi.org/10.3389/FENDO.2020.606269/BIBTEX
Kotton, D. N., & Nilsson, M. (2022). Editorial: Progenitors and Stem Cells in Thyroid Development, Disease, and Regeneration. Frontiers in Endocrinology, 13, 848559. https://doi.org/10.3389/FENDO.2022.848559/BIBTEX
Lhommée, E., Batir, A., Quesada, J. L., Ardouin, C., Fraix, V., Seigneuret, E., Chabardès, S., Benabid, A. L., Pollak, P., & Krack, P. (2014). Dopamine and the biology of creativity: Lessons from Parkinson’s disease. Frontiers in Endocrinology, 5(APR). https://doi.org/10.3389/fendo.2014.00055
, 19. Capuzzo, A. M. (2021). Hashimoto’s Thyroiditis Autoimmune Disease: Background and Current Status, Update Overview of Biotechnological and Biomedical Fields and Future Trends for 3D Models. https://doi.org/10.20944/PREPRINTS202108.0180.V1
Liu, Y., Tang, X., Tian, J., Zhu, C., Peng, H., Rui, K., Wang, Y., Mao, C., Ma, J., Lu, L., Xu, H., & Wang, S. (2014). Th17/Treg Cells Imbalance and GITRL Profile in Patients with Hashimoto’s Thyroiditis. International Journal of Molecular Sciences 2014, Vol. 15, Pages 21674-21686, 15(12), 21674–21686. https://doi.org/10.3390/IJMS151221674
, 17. Baştuğ, B. T. (2016). If this argument is true: Hashimoto’s disease causes chronic thyroid damage so in diseased elderly population the thyroid volumes must be low-retrospective US study. International Journal of Research in Medical Sciences, 4(5), 1433–1437. https://doi.org/10.18203/2320-6012.IJRMS20161205
, 18. Hmeedan, A., Rabee, H. A., Doudein, M., & Shubietah, A. R. M. (2024). Refractory status epilepticus in a pediatric patient: Exploring the association with thyroid dysfunction. Oxford Medical Case Reports, 2024(4), 149–152. https://doi.org/10.1093/OMCR/OMAE031
, 21. Asano, M., & Kenzaka, T. (2022). Guillain-Barré syndrome with transition from hashimoto’s to graves’ disease: a case report. BMC Endocrine Disorders, 22(1), 1–5. https://doi.org/10.1186/S12902-022-01067-7/TABLES/2
Peschen-Rosin, R., Schabet, M., & Dichgans, J. (1999). Manifestation of Hashimoto’s Encephalopathy Years before Onset of Thyroid Disease. European Neurology, 41(2), 79–84. https://doi.org/10.1159/000008007
de Paiva, C. R., Grønhøj, C., Feldt-Rasmussen, U., & von Buchwald, C. (2017). Association between Hashimoto’s thyroiditis and thyroid cancer in 64,628 patients. Frontiers in Oncology, 7(APR), 257428. https://doi.org/10.3389/FONC.2017.00053/BIBTEX
Bastos, D. C. da S., Chiamolera, M. I., Silva, R. E., Souza, M. D. C. B. de, Antunes, R. A., Souza, M. M., Mancebo, A. C. A., Arêas, P. C. F., Reis, F. M., Lo Turco, E. G., Bloise, F. F., & Ortiga-Carvalho, T. M. (2023). Metabolomic analysis of follicular fluid from women with Hashimoto thyroiditis. Scientific Reports 2023 13:1, 13(1), 1–10. https://doi.org/10.1038/s41598-023-39514-7
Hastalığı Olan Kadınlarda Çocukluk Çağı Travmaları, H., ve Yaşam Kalitesi, S., Araştırma Kadriye SLOCUM, T., & Bi̇li̇can, I. (2023). Childhood Trauma, Depression, Anxiety, Stress and Quality of Life in Women with Hashimoto’s Disease: Descriptive Research. Turkiye Klinikleri Journal of Health Sciences, 8(4), 677–685. https://doi.org/10.5336/HEALTHSCI.2023-97638
Lin, I. C., Chen, H. H., Yeh, S. Y., Lin, C. L., & Kao, C. H. (2016). Risk of Depression, Chronic Morbidities, and l-Thyroxine Treatment in Hashimoto Thyroiditis in Taiwan. Medicine (United States), 95(6). https://doi.org/10.1097/MD.0000000000002842
Petek-Balci, B., Yayla, V., & Özer, F. (2005). Multiple sclerosis and Hashimoto thyroiditis: Two cases. Neurologist, 11(5), 301–304. https://doi.org/10.1097/01.NRL.0000162956.40653.38
Erge, E., Kiziltunc, C., Balci, S. B., Atak Tel, B. M., Bilgin, S., Duman, T. T., & Aktas, G. (2023). A Novel Inflammatory Marker for the Diagnosis of Hashimoto’s Thyroiditis: Platelet-Count-to-Lymphocyte-Count Ratio. Diseases 2023, Vol. 11, Page 15, 11(1), 15. https://doi.org/10.3390/DISEASES11010015
Peschen-Rosin, R., Schabet, M., & Dichgans, J. (1999). Manifestation of Hashimoto’s Encephalopathy Years before Onset of Thyroid Disease. European Neurology, 41(2), 79–84. https://doi.org/10.1159/000008007
Wańkowicz, P., Szylińska, A., & Rotter, I. (2021). The Impact of the COVID-19 Pandemic on Psychological Health and Insomnia among People with Chronic Diseases. Journal of Clinical Medicine 2021, Vol. 10, Page 1206, 10(6), 1206. https://doi.org/10.3390/JCM10061206
Karakiewicz-Krawczyk, K., Knyszynska, A., Wieder-Huszla, S., Zabielska, P., Wlodarska, J., & Jurczak, A. (2021). A preliminary assessment of the impact of women’s susceptibility to Hashimoto’s thyroiditis on the occurrence of anxiety and depressive disorders. Archives of Psychiatry and Psychotherapy, 24(1), 65–72. https://doi.org/10.12740/APP/139475
Tiroiditine, H., Psikotik, B., Depresyon, Ö., Bir, :, Sunumu, O., Kapıcı, Y., Güc, B., Tekin, A., Tarihi, G., Yazar, S., & Corresponding, /. (2022). Psychotic Depression Related to Hashimoto’s Thyroiditis: A Case Report. Medical Records, 4(1), 120–122. https://doi.org/10.37990/MEDR.987999
Horiya, M., Anno, T., Kawasaki, F., Iwamoto, Y., Irie, S., Monobe, Y., Tomoda, K., Kaku, K., Nakanishi, S., & Kaneto, H. (2020). Basedow’s disease with associated features of Hashimoto’s thyroiditis based on histopathological findings. BMC Endocrine Disorders, 20(1), 1–7. https://doi.org/10.1186/S12902-020-00602-8/FIGURES/2
Nachawi, N., Lew, M., Konopka, K., & Sandouk, Z. (2020). A challenging case of Mesenchymal Chondrosarcoma involving the thyroid and special considerations for diagnosis. Clinical Diabetes and Endocrinology 2020 6:1, 6(1), 1–5. https://doi.org/10.1186/S40842-020-00094-4
Wu, G., Zou, D., Cai, H., & Liu, Y. (2016). Ultrasonography in the diagnosis of Hashimoto’s thyroiditis. Frontiers in Bioscience - Landmark, 21(5), 1006–1012. https://doi.org/10.2741/4437/PDF
Ito, Y., Tomoda, C., Uruno, T., Takamura, Y., Miya, A., Kobayashi, K., Matsuzuka, F., Kuma, K., & Miyauchi, A. (2005). Needle Tract Implantation of Papillary Thyroid Carcinoma after Fine-needle Aspiration Biopsy. World Journal of Surgery, 29(12), 1544–1549. https://doi.org/10.1007/S00268-005-0086-X
, 38. Dong, L., Sun, X., Xiang, C., Wu, J., & Yu, P. (2016). Hashimoto’s thyroiditis and papillary carcinoma in an adolescent girl: A case report. Molecular and Clinical Oncology, 5(1), 129–131. https://doi.org/10.3892/MCO.2016.895
Yeh, H. C., Futterweit, W., & Gilbert, P. (1996). Micronodulation: ultrasonographic sign of Hashimoto thyroiditis. Journal of Ultrasound in Medicine, 15(12), 813–819. https://doi.org/10.7863/JUM.1996.15.12.813
, 42, 47 Acosta, B. M., & Bianco, A. C. (2010). New insights into thyroid hormone replacement therapy. F1000 Medicine Reports, 2(1). https://doi.org/10.3410/M2-34
Hattori, N., Ishihara, T., Yamagami, K., & Shimatsu, A. (2015). Macro TSH in patients with subclinical hypothyroidism. Clinical Endocrinology, 83(6), 923–930. https://doi.org/10.1111/CEN.12643
Mennemeier, M., Garner, R. D., & Heilman, K. M. (1993). Memory, mood and measurement in hypothyroidism. Journal of Clinical and Experimental Neuropsychology, 15(5), 822–831. https://doi.org/10.1080/01688639308402598
Slouma, M., Mehmli, T., Dhia, S. Ben, Metoui, L., Dhahri, R., Gharsallah, I., Louzir, B., & Dhia, B. (2022). Acute arthritis revealing Hashimoto’s Thyroiditis. Authorea Preprints. https://doi.org/10.22541/AU.164713246.60816706/V1
Ma, J., Yang, X., Yin, H., Wang, Y., Chen, H., Liu, C., Han, G., & Gao, F. (2015). Effect of thyroid hormone replacement therapy on cognition in long-term survivors of aneurysmal subarachnoid hemorrhage. Experimental and Therapeutic Medicine, 10(1), 369–373. https://doi.org/10.3892/ETM.2015.2475/HTML
Wiersinga, W. M., Duntas, L., Fadeyev, V., Nygaard, B., & Vanderpump, M. P. J. (2012). 2012 ETA Guidelines: The Use of L-T4 + L-T3 in the Treatment of Hypothyroidism. European Thyroid Journal, 1(2), 55–71. https://doi.org/10.1159/000339444
Topliss, D. J., & Soh, S. B. (2013). Use and misuse of thyroid hormone. Singapore Medical Journal, 54(7), 406–410. https://doi.org/10.11622/SMEDJ.2013143
McDaneld, L. M., Fields, J. D., Bourdette, D. N., & Bhardwaj, A. (2009). Immunomodulatory Therapies in Neurologic Critical Care. Neurocritical Care 2009 12:1, 12(1), 132–143. https://doi.org/10.1007/S12028-009-9274-0
Shaw, P. J., Walls, T. J., Newman, P. K., Cleland, P. G., & Cartlidge, N. (1991). Hashimoto’s encephalopathy: A steroid-responsive disorder associated with high anti-thyroid antibody titers—report of 5 cases. Neurology, 41(2), 228–233. https://doi.org/10.1212/WNL.41.2_PART_1.228
Pfeuffer, S., Ruck, T., Rolfes, L., Pawlowski, M., Pawlitzki, M., Wiendl, H., Kovac, S., & Meuth, S. G. (2021). Patients with a relapsing course of steroid-responsive encephalopathy associated with autoimmune thyroiditis exhibit persistent intrathecal CD4+ T-cell activation. European Journal of Neurology, 28(4), 1284–1291. https://doi.org/10.1111/ENE.14657
De Cerqueira, A. C. R., Bezerra, J. M. F., De Magalhães, G. C., Rozenthal, M., & Nardi, A. E. (2008). Hashimoto’s encephalopathy with clinical features similar to those of Creutzfeldt-Jakob disease. Arquivos de Neuro-Psiquiatria, 66(4), 903–905. https://doi.org/10.1590/S0004-282X2008000600029
Graus, F., Titulaer, M. J., Balu, R., Benseler, S., Bien, C. G., Cellucci, T., Cortese, I., Dale, R. C., Gelfand, J. M., Geschwind, M., Glaser, C. A., Honnorat, J., Höftberger, R., Iizuka, T., Irani, S. R., Lancaster, E., Leypoldt, F., Prüss, H., Rae-Grant, A., … Dalmau, J. (2016). A clinical approach to diagnosis of autoimmune encephalitis. The Lancet Neurology, 15(4), 391–404. https://doi.org/10.1016/S1474-4422(15)00401-9
Kotyzová, D., Eybl, V., Mihaljevic, M., & Glattre, E. (2005). Effect of long-term administration of arsenic (III) and bromine with and without selenium and iodine supplementation on the element level in the thyroid of rat. Http://Biomed.Papers.Upol.Cz/Doi/10.5507/Bp.2005.052.Html, 149(2), 329–333. https://doi.org/10.5507/BP.2005.052
Ventura, M., Melo, M., & Carrilho, F. (2017). Selenium and Thyroid Disease: From Pathophysiology to Treatment. International Journal of Endocrinology, 2017(1), 1297658. https://doi.org/10.1155/2017/1297658
Bonfig, W., Gärtner, R., & Schmidt, H. (2010). Selenium Supplementation does not Decrease Thyroid Peroxidase Antibody Concentration in Children and Adolescents with Autoimmune Thyroiditis. The Scientific World Journal, 10(1), 990–996. https://doi.org/10.1100/TSW.2010.91
Chanoine, J. P. (2003). Selenium and thyroid function in infants, children and adolescents. BioFactors, 19(3–4), 137–143. https://doi.org/10.1002/BIOF.5520190306
Winther, K. H., Wichman, J. E. M., Bonnema, S. J., & Hegedüs, L. (2017). Insufficient documentation for clinical efficacy of selenium supplementation in chronic autoimmune thyroiditis, based on a systematic review and meta-analysis. Endocrine, 55(2), 376–385. https://doi.org/10.1007/S12020-016-1098-Z/FIGURES/2
van der Gaag, E., van der Palen, J., Schaap, P., van Voorthuizen, M., & Hummel, T. (2020). A Lifestyle (Dietary) Intervention Reduces Tiredness in Children with Subclinical Hypothyroidism, a Randomized Controlled Trial. International Journal of Environmental Research and Public Health 2020, Vol. 17, Page 3689, 17(10), 3689. https://doi.org/10.3390/IJERPH17103689
Kryczyk-Kozioł, J., Zagrodzki, P., Prochownik, E., Błażewska-Gruszczyk, A., Słowiaczek, M., Sun, Q., Schomburg, L., Ochab, E., & Bartyzel, M. (2021). Positive effects of selenium supplementation in women with newly diagnosed Hashimoto’s thyroiditis in an area with low selenium status. International Journal of Clinical Practice, 75(9), e14484. https://doi.org/10.1111/IJCP.14484
, 62, 63, 64, 65. Ramazzotti, G., Ratti, S., Fiume, R., Follo, M. Y., Billi, A. M., Rusciano, I., Obeng, E. O., Manzoli, L., Cocco, L., & Faenza, I. (2019). Phosphoinositide 3 Kinase Signaling in Human Stem Cells from Reprogramming to Differentiation: A Tale in Cytoplasmic and Nuclear Compartments. International Journal of Molecular Sciences 2019, Vol. 20, Page 2026, 20(8), 2026. https://doi.org/10.3390/IJMS20082026
Chaudhari, P., Ye, Z., & Jang, Y. Y. (2014). Roles of Reactive Oxygen Species in the Fate of Stem Cells. Https://Home.Liebertpub.Com/Ars, 20(12), 1881–1890. https://doi.org/10.1089/ARS.2012.4963
, 68, 69. Qin, C., Li, Y., & Wang, K. (2021).
Functional Mechanism of Bone Marrow-Derived Mesenchymal Stem Cells in the Treatment of Animal Models with Alzheimer’s Disease: Inhibition of Neuroinflammation
. Journal of Inflammation Research, 14, 4761–4775. https://doi.org/10.2147/JIR.S327538Lin, W., Chen, S., Wang, Y., Wang, M., Lee, W. Y. W., Jiang, X., & Li, G. (2021). Dynamic regulation of mitochondrial-endoplasmic reticulum crosstalk during stem cell homeostasis and aging. Cell Death & Disease 2021 12:9, 12(9), 1–8. https://doi.org/10.1038/s41419-021-03912-4
Ayala-Cuellar, A. P., Kang, J. H., Jeung, E. B., & Choi, K. C. (2019). Roles of Mesenchymal Stem Cells in Tissue Regeneration and Immunomodulation. Biomolecules & Therapeutics, 27(1), 25–33. https://doi.org/10.4062/BIOMOLTHER.2017.260
Kuo, Y. R., Chen, C. C., Goto, S., Lin, P. Y., Wei, F. C., & Chen, C. L. (2012). Mesenchymal Stem Cells as Immunomodulators in a Vascularized Composite Allotransplantation. Journal of Immunology Research, 2012(1), 854846. https://doi.org/10.1155/2012/854846
Smagul, S., Kim, Y., Smagulova, A., Raziyeva, K., Nurkesh, A., & Saparov, A. (2020). Biomaterials Loaded with Growth Factors/Cytokines and Stem Cells for Cardiac Tissue Regeneration. International Journal of Molecular Sciences 2020, Vol. 21, Page 5952, 21(17), 5952. https://doi.org/10.3390/IJMS21175952
, 75. Xiong, Y. Y., Gong, Z. T., Tang, R. J., & Yang, Y. J. (2021). The pivotal roles of exosomes derived from endogenous immune cells and exogenous stem cells in myocardial repair after acute myocardial infarction. Theranostics, 11(3), 1046–1058. https://doi.org/10.7150/THNO.53326
Yang, N., Liu, X., Chen, X., Yu, S., Yang, W., & Liu, Y. (2022). Stem cells from exfoliated deciduous teeth transplantation ameliorates Sjögren’s syndrome by secreting soluble PD-L1. Journal of Leukocyte Biology, 111(5), 1043–1055. https://doi.org/10.1002/JLB.6MA0921-752RR
Rawat, S., Dadhwal, V., & Mohanty, S. (2021). Dexamethasone Priming Enhances Stemness and Immunomodulatory Property of Tissue-specific Human Mesenchymal Stem Cells. https://doi.org/10.21203/RS.3.RS-446758/V1
Jiang, C. M., Liu, J., Zhao, J. Y., Xiao, L., An, S., Gou, Y. C., Quan, H. X., Cheng, Q., Zhang, Y. L., He, W., Wang, Y. T., Yu, W. J., Huang, Y. F., Yi, Y. T., Chen, Y., & Wang, J. (2014). Effects of Hypoxia on the Immunomodulatory Properties of Human Gingiva–Derived Mesenchymal Stem Cells. Http://Dx.Doi.Org/10.1177/0022034514557671, 94(1), 69–77. https://doi.org/10.1177/0022034514557671
Shin, T. H., Kim, H. S., Choi, S. W., & Kang, K. S. (2017). Mesenchymal Stem Cell Therapy for Inflammatory Skin Diseases: Clinical Potential and Mode of Action. International Journal of Molecular Sciences 2017, Vol. 18, Page 244, 18(2), 244. https://doi.org/10.3390/IJMS18020244
, 81, 82. Chen, M., Su, W., Lin, X., Guo, Z., Wang, J., Zhang, Q., Brand, D., Ryffel, B., Huang, J., Liu, Z., He, X., Le, A. D., & Zheng, S. G. (2013). Adoptive transfer of human gingiva-derived mesenchymal stem cells ameliorates collagen-induced arthritis via suppression of Th1 and Th17 cells and enhancement of regulatory T cell differentiation. Arthritis and Rheumatism, 65(5), 1181–1193. https://doi.org/10.1002/ART.37894
Liao, L., & Zhao, R. C. (2015). Mesenchymal Stem Cells and Their Immunomodulatory Properties. Stem Cells: Basics and Clinical Translation, 67–83. https://doi.org/10.1007/978-94-017-7273-0_3
Xu, C., Yu, P., Han, X., Du, L., Gan, J., Wang, Y., & Shi, Y. (2014). TGF-β Promotes Immune Responses in the Presence of Mesenchymal Stem Cells. The Journal of Immunology, 192(1), 103–109. https://doi.org/10.4049/JIMMUNOL.1302164
Wang, Z., Tang, X., Xu, W., Cao, Z., Sun, L., Li, W., Li, Q., Zou, P., & Zhao, Z. (2013). The Different Immunoregulatory Functions on Dendritic Cells between Mesenchymal Stem Cells Derived from Bone Marrow of Patients with Low-Risk or High-Risk Myelodysplastic Syndromes. PLOS ONE, 8(3), e57470. https://doi.org/10.1371/JOURNAL.PONE.0057470
Carrade Holt, D. D., Wood, J. A., Granick, J. L., Walker, N. J., Clark, K. C., & Borjesson, D. L. (2014). Equine Mesenchymal Stem Cells Inhibit T Cell Proliferation Through Different Mechanisms Depending on Tissue Source. Https://Home.Liebertpub.Com/Scd, 23(11), 1258–1265. https://doi.org/10.1089/SCD.2013.0537
Elzainy, A., & Sadik, A. El. (2024). Comparison between the Regenerative and Therapeutic Impact of BM-MSCs and AD-MSCs Pre-treated with Melatonin on Liver Fibrosis. https://doi.org/10.20944/PREPRINTS202401.1871.V1
Abd El Salam, S., Mohamed Faruk, E., Fouad, H., Yehia Nafie, N., & Angelini, P. (2019). Effects of Mesenchymal Stem Cells and Their Derived Microvesicles on Pulmonary Toxicity Induced by Petrol Exhaust Nanoparticle; Histological and Immuno-Histochemical Study. Annual Research & Review in Biology, 31(6), 1–14. https://doi.org/10.9734/ARRB/2019/V31I630070
Sasaki, H., Hirose, T., Oura, T., Otsuka, R., Rosales, I., Ma, D., Lassiter, G., Karadagi, A., Tomosugi, T., Dehnadi, A., Matsunami, M., Paul, S. R., Reeves, P. M., Hanekamp, I., Schwartz, S., Colvin, R. B., Lee, H., Spitzer, T. R., Cosimi, A. B., … Kawai, T. (2023). Selective Bcl-2 inhibition promotes hematopoietic chimerism and allograft tolerance without myelosuppression in nonhuman primates. Science Translational Medicine, 15(690). https://doi.org/10.1126/SCITRANSLMED.ADD5318/SUPPL_FILE/SCITRANSLMED.ADD5318_MDAR_REPRODUCIBILITY_CHECKLIST.PDF
, 91. Burt, R. K., Traynor, A., & Ramsey-Goldman, R. (1997). Hematopoietic Stem-Cell Transplantation for Systemic Lupus Erythematosus. New England Journal of Medicine, 337(24), 1777–1778. https://doi.org/10.1056/NEJM199712113372416
Burt, R. K., Traynor, A. E., Cohen, B., Karlin, K. H., Davis, F. A., Stefoski, D., Terry, C., Lobeck, L., Russell, E. J., Goolsby, C., Rosen, S., Gordon, L. I., Keever-Taylor, C., Brush, M., Fishman, M., & Burns, W. H. (1998). T cell-depleted autologous hematopoietic stem cell transplantation for multiple sclerosis: report on the first three patients. Bone Marrow Transplantation 1998 21:6, 21(6), 537–541. https://doi.org/10.1038/sj.bmt.1701129
Sanders, S., Bredeson, C., Pringle, C. E., Martin, L., Allan, D., Bence-Bruckler, I., Hamelin, L., Hopkins, H. S., Sabloff, M., Sheppard, D., Tay, J., Huebsch, L., & Atkins, H. L. (2014). Autologous Stem Cell Transplantation for Stiff Person Syndrome: Two Cases From the Ottawa Blood and Marrow Transplant Program. JAMA Neurology, 71(10), 1296–1299. https://doi.org/10.1001/JAMANEUROL.2014.1297
, 98. Labiad, Y., Venton, G., Farnault, L., Baier, C., Colle, J., Mercier, C., Ivanov, V., Nicolino, C., Loriod, B., Fernandez-Nunez, N., Torres, M., Mattei, J. C., Rihet, P., Nguyen, C., & Costello, R. (2018b). A transcriptomic signature predicting septic outcome in patients undergoing autologous stem cell transplantation. Experimental Hematology, 65, 49–56. https://doi.org/10.1016/j.exphem.2018.06.001
Raja, A., Afridi, S. M., Noe, M. M., Jain, A., Raja, A., Afridi, S. M., Noe, M. M., & Jain, A. (2022). Cytoplasmic Antineutrophil Cytoplasmic Antibodies (C-ANCA) Vasculitis: An Uncommon Complication After Stem Cell Transplantation. Cureus, 14(5). https://doi.org/10.7759/CUREUS.25445
Krstevska, S., Genadieva-Stavric, S., Pivkova, A., Stojanovski, Z., Georgievski, B., & Balkanov, T. (2011). Acute graft versus host disease in hematopoietic stem cell alotransplant recipients. Medicinski Arhiv, 65(5), 260–264. https://doi.org/10.5455/MEDARH.2011.65.260-264
Lagasse, E., Connors, H., Al-Dhalimy, M., Reitsma, M., Dohse, M., Osborne, L., Wang, X., Finegold, M., Weissman, I. L., & Grompe, M. (2000). Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nature Medicine 2000 6:11, 6(11), 1229–1234. https://doi.org/10.1038/81326
Steptoe, R. J., Ritchie, J. M., & Harrison, L. C. (2003). Transfer of hematopoietic stem cells encoding autoantigen prevents autoimmune diabetes. The Journal of Clinical Investigation, 111(9), 1357–1363. https://doi.org/10.1172/JCI15995
Duyen, N. T., Vien, M. Van, Khai, L. T., Son, L. H., Phuong, N. T. M., Nga, L. T. T., Sy, B. T., Hoan, P. Q., Tuan, N. T., Truong, H. X., Hieu, P. Van, Trang, T. T. H., Nga, D. T. H., Ngoc, N. B., Minh, L. D., & Binh, N. T. (2021). Purification of CD34+ cells in myasthenia gravis patient’s peripheral blood stem cells using the CliniMACS cell separation system. Journal of 108 - Clinical Medicine and Phamarcy, 16(TA). https://doi.org/10.52389/YDLS.V16ITA.1123
Snarski, E. (2019). Autologous hematopoietic stem cell transplantation in autoimmune diseases – a brand new standard. Where do we go from here? Reumatologia, 57(6), 307–308. https://doi.org/10.5114/REUM.2019.90824
Nasa, Z., Chung, J. Y., Chan, J., Toh, B. H., & Alderuccio, F. (2012). Nonmyeloablative conditioning generates autoantigen-encoding bone marrow that prevents and cures an experimental autoimmune disease. American Journal of Transplantation, 12(8), 2062–2071. https://doi.org/10.1111/j.1600-6143.2012.04068.x
AlOdhaibi, K. A., Varga, J., & Furst, D. E. (2020). Hematopoietic stem cell transplantation in systemic sclerosis: Yes!! BUT. . . Https://Doi.Org/10.1177/2397198320971967, 6(1), 44–49. https://doi.org/10.1177/2397198320971967
Rabusin, M., Snowden, J. A., Veys, P., Quartier, P., Dalle, J. H., Dhooge, C., Di Bartolomeo, P., Gonzalez-Vicent, M., Gibson, B., Iriondo, A., Juergens, H., Lisukov, I., Messina, C., Mialou, V., Steward, C. G., Urban, C., Renard, M., Giurici, N., Peters, C., … Saccardi, R. (2013). Long-Term Outcomes of Hematopoietic Stem Cell Transplantation for Severe Treatment-Resistant Autoimmune Cytopenia in Children. Biology of Blood and Marrow Transplantation, 19(4), 666–669. https://doi.org/10.1016/j.bbmt.2012.12.008
Kline, R. M., Neudorf, S. M. L., & Baron, H. I. (2007). Correction of Celiac Disease After Allogeneic Hematopoietic Stem Cell Transplantation for Acute Myelogenous Leukemia. Pediatrics, 120(4), e1120–e1122. https://doi.org/10.1542/PEDS.2006-3397
Petri, M., Jones, R. J., & Brodsky, R. A. (2003). High-dose cyclophosphamide without stem cell transplantation in systemic lupus erythematosus. Arthritis and Rheumatism, 48(1), 166–173. https://doi.org/10.1002/ART.10752
, 109, 112, 114, 115. Medlock, D., Chaljub, E., Gavin, M., & Peiris, A. N. (2019a). Shifting cervical lymphadenopathy in Hashimoto’s disease. Baylor University Medical Center Proceedings, 32(2), 235–236. https://doi.org/10.1080/08998280.2019.1570421
, Baştuğ, B. T. (2016). If this argument is true: Hashimoto’s disease causes chronic thyroid damage so in diseased elderly population the thyroid volumes must be low-retrospective US study. International Journal of Research in Medical Sciences, 4(5), 1433–1437. https://doi.org/10.18203/2320-6012.IJRMS20161205
Gąbka, I., Dalmata, W., Gendek, K., Dąbrowski, J., Kozłowska, A., Korzeniowska, A., Załęska, N., & Ziółkiewicz, A. (2023). Hashimoto’s disease - the role of factors and diet in the course of the disease. Journal of Education, Health and Sport, 17(1), 153–164. https://doi.org/10.12775/JEHS.2023.17.01.014
Atkinson, A., Esenabhalu, V. E., Atkinson, A., & Esenabhalu, V. E. (2022). Hashimoto’s Disease: Associated Thyroid Gland Disorders, Pharmacological, and Nutritional Interventions. Open Journal of Endocrine and Metabolic Diseases, 12(10), 211–224. https://doi.org/10.4236/OJEMD.2022.1210016
Moskowitz, C., Dutcher, J. P., & Wiernik, P. H. (1992). Association of thyroid disease with acute leukemia. American Journal of Hematology, 39(2), 102–107. https://doi.org/10.1002/AJH.2830390206
Sewell, W., & Lin, R. Y. (2014). Generation of thyroid follicular cells from pluripotent stem cells: Potential for regenerative medicine. Frontiers in Endocrinology, 5(JUN), 93443. https://doi.org/10.3389/FENDO.2014.00096/BIBTEX
, 119, 121. Ran, Q., Zhou, Q., Oda, K., Yasue, A., Abe, M., Ye, X., Li, Y., Sasaoka, T., Sakimura, K., Ajioka, Y., & Saijo, Y. (2020a). Generation of Thyroid Tissues From Embryonic Stem Cells via Blastocyst Complementation In Vivo. Frontiers in Endocrinology, 11, 609697. https://doi.org/10.3389/FENDO.2020.609697/BIBTEX
Arauchi, A., Matsuura, K., Shimizu, T., & Okano, T. (2017). Functional thyroid follicular cells differentiation from human-induced pluripotent stem cells in suspension culture. Frontiers in Endocrinology, 8(MAY), 264522. https://doi.org/10.3389/FENDO.2017.00103/BIBTEX
Ogundipe, V. M. L., Groen, A. H., Hosper, N., Nagle, P. W. K., Hess, J., Faber, H., Jellema, A. L., Baanstra, M., Links, T. P., Unger, K., Plukker, J. T. M., & Coppes, R. P. (2021). Generation and Differentiation of Adult Tissue-Derived Human Thyroid Organoids. Stem Cell Reports, 16(4), 913–925. https://doi.org/10.1016/j.stemcr.2021.02.011
Hoogduijn, M. J. (2017). Immunomodulation by mesenchymal stem cells: Lessons from vascularized composite allotransplantation. Transplantation, 101(1), 30–31. https://doi.org/10.1097/TP.0000000000001534
Melief, S. M., Schrama, E., Brugman, M. H., Tiemessen, M. M., Hoogduijn, M. J., Fibbe, W. E., & Roelofs, H. (2013). Multipotent stromal cells induce human regulatory T cells through a novel pathway involving skewing of monocytes toward anti-inflammatory macrophages. Stem Cells, 31(9), 1980–1991. https://doi.org/10.1002/STEM.1432
Lai, P., Weng, J., Guo, L., Chen, X., & Du, X. (2019). Novel insights into MSC-EVs therapy for immune diseases. Biomarker Research, 7(1), 1–10. https://doi.org/10.1186/S40364-019-0156-0/TABLES/2
Shen, Z., Huang, W., Liu, J., Tian, J., Wang, S., & Rui, K. (2021). Effects of Mesenchymal Stem Cell-Derived Exosomes on Autoimmune Diseases. Frontiers in Immunology, 12, 749192. https://doi.org/10.3389/FIMMU.2021.749192/BIBTEX
Rashedi, I., Gómez-Aristizábal, A., Wang, X. H., Viswanathan, S., & Keating, A. (2017). TLR3 or TLR4 Activation Enhances Mesenchymal Stromal Cell-Mediated Treg Induction via Notch Signaling. Stem Cells, 35(1), 265–275. https://doi.org/10.1002/STEM.2485
Lin, I. C., Chen, H. H., Yeh, S. Y., Lin, C. L., & Kao, C. H. (2016). Risk of Depression, Chronic Morbidities, and l-Thyroxine Treatment in Hashimoto Thyroiditis in Taiwan. Medicine (United States), 95(6). https://doi.org/10.1097/MD.0000000000002842
Davis, N. E., Hamilton, D., & Fontaine, M. J. (2012). Harnessing the immunomodulatory and tissue repair properties of mesenchymal stem cells to restore β cell function. Current Diabetes Reports, 12(5), 612–622. https://doi.org/10.1007/S11892-012-0305-4/METRICS
Li, Y., Ren, X., Zhang, Z., Duan, Y., Li, H., Chen, S., Shao, H., Li, X., & Zhang, X. (2022). Effect of small extracellular vesicles derived from IL-10-overexpressing mesenchymal stem cells on experimental autoimmune uveitis. Stem Cell Research and Therapy, 13(1), 1–15. https://doi.org/10.1186/S13287-022-02780-9/FIGURES/7
Ding, Y., Bushell, A., & Wood, K. J. (2010). Mesenchymal stem-cell immunosuppressive capabilities: Therapeutic implications in islet transplantation. Transplantation, 89(3), 270–273. https://doi.org/10.1097/TP.0B013E3181C6FFBE
Choi, E. W., Lee, J. M., Lee, H. W., Yang, J., & Youn, H. Y. (2015). Therapeutic effects of CTLA4Ig gene-transduced adipose tissue-derived mesenchymal stem cell transplantation on established autoimmune thyroiditis. Cell Transplantation, 24(11), 2221–2236. https://doi.org/10.3727/096368914X685122/ASSET/IMAGES/LARGE/10.3727_096368914X685122-FIG7.JPEG
Weetman, A. P., & McGregor, A. M. (1994). Autoimmune Thyroid Disease: Further Developments in Our Understanding. Endocrine Reviews, 15(6), 788–830. https://doi.org/10.1210/EDRV-15-6-788
Burek, C. L., & Talor, M. V. (2009). Environmental triggers of autoimmune thyroiditis. Journal of Autoimmunity, 33(3–4), 183–189. https://doi.org/10.1016/J.JAUT.2009.09.001
Ruggeri, R. M., Campennì, A., Giuffrida, G., Casciaro, M., Barbalace, M. C., Hrelia, S., Trimarchi, F., Cannavò, S., & Gangemi, S. (2021). Oxidative stress as a key feature of autoimmune thyroiditis: An update. Minerva Endocrinologica, 45(4), 326–343. https://doi.org/10.23736/S0391-1977.20.03268-X
Teti, C., Panciroli, M., Nazzari, E., Pesce, G., Mariotti, S., Olivieri, A., & Bagnasco, M. (2021). Iodoprophylaxis and thyroid autoimmunity: an update. Immunologic Research, 69(2), 129–138. https://doi.org/10.1007/S12026-021-09192-6/TABLES/2
Hoshikawa, S., Nakagawa, Y., Ozaki, H., Takahashi, Y., Ito, S., Yoshida, K., & Mori, K. (2013). Effects of Green Tea Polyphenols on Iodide-Induced Autoimmune Thyroiditis In Nonobese Diabetic Mice. Immunological Investigations, 42(3), 235–246. https://doi.org/10.3109/08820139.2012.753611
Sun, H., Ye, Z., Li, N., Jin, F., Yan, J., & Wu, K. (2018). Effect of emodin on T cell subsets in NOD mice with NaI induced experimental autoimmune thyroiditis. Molecular Medicine Reports, 18(5), 4303–4312. https://doi.org/10.3892/MMR.2018.9434/HTML
Zuo, D., Liu, X., Shou, Z., Fan, H., Tang, Q., Duan, X., Cao, D., Zou, Z., & Zhang, L. (2013). Study on the interactions between transplanted bone marrow-derived mesenchymal stem cells and regulatory T cells for the treatment of experimental colitis. International Journal of Molecular Medicine, 32(6), 1337–1344. https://doi.org/10.3892/IJMM.2013.1529/HTML
Luz-Crawford, P., Kurte, M., Bravo-Alegría, J., Contreras, R., Nova-Lamperti, E., Tejedor, G., Noël, D., Jorgensen, C., Figueroa, F., Djouad, F., & Carrión, F. (2013). Mesenchymal stem cells generate a CD4+CD25+Foxp3 + regulatory T cell population during the differentiation process of Th1 and Th17 cells. Stem Cell Research and Therapy, 4(3), 1–12. https://doi.org/10.1186/SCRT216/FIGURES/7
, 142. Chen, Q. H., Wu, F., Liu, L., Chen, H. B., Zheng, R. Q., Wang, H. L., & Yu, L. N. (2020). Mesenchymal stem cells regulate the Th17/Treg cell balance partly through hepatocyte growth factor in vitro. Stem Cell Research and Therapy, 11(1), 1–11. https://doi.org/10.1186/S13287-020-01612-Y/FIGURES/7
, 143. Li, Y., Wang, F., Guo, R., Zhang, Y., Chen, D., Li, X., Tian, W., Xie, X., & Jiang, Z. (2019). Exosomal sphingosine 1-phosphate secreted by mesenchymal stem cells regulated Treg/Th17 balance in aplastic anemia. IUBMB Life, 71(9), 1284–1292. https://doi.org/10.1002/IUB.2035
Prajoko, Y. W., Putra, A., Dirja, B. T., Muhar, A. M., & Amalina, N. D. (2022). The Ameliorating Effects of MSCs in Controlling Treg-mediated B-Cell Depletion by Indoleamine 2, 3-dioxygenase Induction in PBMC of SLE Patients. Open Access Macedonian Journal of Medical Sciences, 10(A), 6–11. https://doi.org/10.3889/OAMJMS.2022.7487
, 146. Gazdic, M., Markovic, B. S., Arsenijevic, A., Jovicic, N., Acovic, A., Harrell, C. R., Fellabaum, C., Djonov, V., Arsenijevic, N., Lukic, M. L., & Volarevic, V. (2018). Crosstalk between mesenchymal stem cells and T regulatory cells is crucially important for the attenuation of acute liver injury. Liver Transplantation, 24(5), 687–702. https://doi.org/10.1002/LT.25049
, 148, 149. Levy, O., Kuai, R., Siren, E. M. J., Bhere, D., Milton, Y., Nissar, N., de Biasio, M., Heinelt, M., Reeve, B., Abdi, R., Alturki, M., Fallatah, M., Almalik, A., Alhasan, A. H., Shah, K., & Karp, J. M. (2020). Shattering barriers toward clinically meaningful MSC therapies. Science Advances, 6(30). https://doi.org/10.1126/SCIADV.ABA6884/ASSET/A610CDB1-F74A-4D91-9FB8-5A5CB0593ED2/ASSETS/GRAPHIC/ABA6884-F4.JPEG
Eom, Y. W., Kang, S. H., Kim, M. Y., Lee, J. I., & Baik, S. K. (2020). Mesenchymal stem cells to treat liver diseases. Annals of Translational Medicine, 8(8), 563–563. https://doi.org/10.21037/ATM.2020.02.163
Tsuchiya, A., Kojima, Y., Ikarashi, S., Seino, S., Watanabe, Y., Kawata, Y., & Terai, S. (2017). Clinical trials using mesenchymal stem cells in liver diseases and inflammatory bowel diseases. Inflammation and Regeneration, 37(1), 1–15. https://doi.org/10.1186/S41232-017-0045-6/FIGURES/2
Paganelli, A., Tarentini, E., Benassi, L., Kaleci, S., & Magnoni, C. (2020). Mesenchymal stem cells for the treatment of psoriasis: a comprehensive review. Clinical and Experimental Dermatology, 45(7), 824–830. https://doi.org/10.1111/CED.14269
Wang, M., Yuan, Q., & Xie, L. (2018). Mesenchymal Stem Cell-Based Immunomodulation: Properties and Clinical Application. Stem Cells International, 2018(1), 3057624. https://doi.org/10.1155/2018/3057624
Paganelli, A., Tarentini, E., Benassi, L., Kaleci, S., & Magnoni, C. (2020). Mesenchymal stem cells for the treatment of psoriasis: a comprehensive review. Clinical and Experimental Dermatology, 45(7), 824–830. https://doi.org/10.1111/CED.14269
, 156. Goldman, S., Traverse, J. H., Zile, M. R., Juneman, E., Greenberg, B., Kelly, R. F., Koevary, J. W., & Lancaster, J. J. (2022). Perspective on the development of a bioengineered patch to treat heart failure: rationale and proposed design of phase I clinical trial. Vessel Plus 2022;6:54., 6(0), N/A-N/A. https://doi.org/10.20517/2574-1209.2021.149
Coatti, G. C., Beccari, M. S., Olávio, T. R., Mitne-Neto, M., Okamoto, O. K., & Zatz, M. (2015). Stem cells for amyotrophic lateral sclerosis modeling and therapy: Myth or fact? Cytometry Part A, 87(3), 197–211. https://doi.org/10.1002/CYTO.A.22630
Sato, Y., & Tsuji, M. (2021). Diverse actions of cord blood cell therapy for hypoxic-ischemic encephalopathy. Pediatrics International, 63(5), 497–503. https://doi.org/10.1111/PED.14604
Feldman, E. L., Boulis, N. M., Hur, J., Johe, K., Rutkove, S. B., Federici, T., Polak, M., Bordeau, J., Sakowski, S. A., & Glass, J. D. (2014). Intraspinal neural stem cell transplantation in amyotrophic lateral sclerosis: Phase 1 trial outcomes. Annals of Neurology, 75(3), 363–373. https://doi.org/10.1002/ANA.24113
Schulman, I. H., Balkan, W., Saltzman, R., Daniel DaFonseca, Caceres, L. V., Delgado, C., Pujol, M. V., Ramdas, K. N., Tovar, J., Vidro-Casiano, M., Hare, J. M., Schulman, I. H., Balkan, W., Saltzman, R., Daniel DaFonseca, Caceres, L. V., Delgado, C., Pujol, M. V., Ramdas, K. N., … Hare, J. M. (2018). Unique Aspects of the Design of Phase I/II Clinical Trials of Stem Cell Therapy. The Management of Clinical Trials. https://doi.org/10.5772/INTECHOPEN.72949
Sanina, C., & Hare, J. M. (2015). Mesenchymal Stem Cells as a Biological Drug for Heart Disease: Where Are We with Cardiac Cell-Based Therapy? Circulation Research, 117(3), 229–233. https://doi.org/10.1161/CIRCRESAHA.117.306306/ASSET/4773BB89-F266-4FFA-AA2B-E22CE2BF4EC5/ASSETS/GRAPHIC/229FIG01.JPEG
Garcia-Arranz, M., Alonso-Gregorio, S., Fontana-Portella, P., Bravo, E., Diez Sebastian, J., Fernandez-Santos, M. E., & Garcia-Olmo, D. (2020). Two phase I/II clinical trials for the treatment of urinary incontinence with autologous mesenchymal stem cells. Stem Cells Translational Medicine, 9(12), 1500–1508. https://doi.org/10.1002/SCTM.19-0431
, 164. Manevska, N., Stojkovska, N., Tasheva, L., Jovanovski-Srceva, M., Makazlieva, T., & Stojanoski, S. (2022). Autoimmune Hashimoto thyroiditis with concomitant autoimmune hepatitis. Archives of Public Health, 14(1). https://doi.org/10.3889/aph.2022.6042
Obeid, A. M., Qari, F. A., Aljaouni, S. K., Rohaiem, S., Elsayed, A. A., Alsayyad, M. M., & Okmi, E. A. (2022). The effect of wet-cupping therapy (hijama) in modulating autoimmune activity of Hashimoto’s thyroiditis. Saudi Medical Journal, 43(1), 45–52. https://doi.org/10.15537/SMJ.2022.43.1.20210755
Wang, W., Zhang, B. T., Jiang, Q. L., Zhao, H. Q., Xu, Q., Zeng, Y., Xu, J. Y., & Jiang, J. (2022). Leptin receptor antagonist attenuates experimental autoimmune thyroiditis in mice by regulating Treg/Th17 cell differentiation. Frontiers in Endocrinology, 13, 1042511. https://doi.org/10.3389/FENDO.2022.1042511/BIBTEX
Duyen, N. T., Vien, M. Van, Khai, L. T., Son, L. H., Phuong, N. T. M., Nga, L. T. T., Sy, B. T., Hoan, P. Q., Tuan, N. T., Truong, H. X., Hieu, P. Van, Trang, T. T. H., Nga, D. T. H., Ngoc, N. B., Minh, L. D., & Binh, N. T. (2021). Purification of CD34+ cells in myasthenia gravis patient’s peripheral blood stem cells using the CliniMACS cell separation system. Journal of 108 - Clinical Medicine and Phamarcy, 16(TA). https://doi.org/10.52389/YDLS.V16ITA.1123
Vinski, D. S. P., Dollar, D., Nugroho, A. K., & Vinski, N. C. (2024). The Use of Quantum Stem Cell Therapy for Autoimmune Diseases Treatment. International Journal of Social Health, 3(4), 276–287. https://doi.org/10.58860/IJSH.V3I4.186
Jantunen, E., & Myllykangas-Luosujärvi, R. (2000). Stem cell transplantation for treatment of severe autoimmune diseases: current status and future perspectives. Bone Marrow Transplantation 2000 25:4, 25(4), 351–356. https://doi.org/10.1038/sj.bmt.1702152
, 173. Sanina, C., & Hare, J. M. (2015). Mesenchymal Stem Cells as a Biological Drug for Heart Disease. Circulation Research, 117(3), 229–233. https://doi.org/10.1161/CIRCRESAHA.117.306306
Tao, A., Lin, Y., Pinheiro, J., & Shih, W. J. (2014). Dose Finding Method in Joint Modeling of Efficacy and Safety Endpoints in Phase II Studies. International Journal of Statistics and Probability, 4(1), p33. https://doi.org/10.5539/IJSP.V4N1P33
Packer, C., Boddice, B., & Simpson, S. (2013). Regenerative medicine techniques in cardiovascular disease: Where is the horizon? Regenerative Medicine, 8(3), 351–360. https://doi.org/10.2217/RME.13.21/SUPPL_FILE/SUPPL_MATERIAL.DOC
Lang, C. I., Wolfien, M., Langenbach, A., Müller, P., Wolkenhauer, O., Yavari, A., Ince, H., Steinhoff, G., Krause, B. J., David, R., & Glass, Ä. (2017). Cardiac Cell Therapies for the Treatment of Acute Myocardial Infarction: A Meta-Analysis from Mouse Studies. Cellular Physiology and Biochemistry, 42(1), 254–268. https://doi.org/10.1159/000477324
Donndorf, P., Kaminski, A., Tiedemann, G., Kundt, G., & Steinhoff, G. (2012). Validating intramyocardial bone marrow stem cell therapy in combination with coronary artery bypass grafting, the PERFECT Phase III randomized multicenter trial: Study protocol for a randomized controlled trial. Trials, 13(1), 1–5. https://doi.org/10.1186/1745-6215-13-99/METRICS
Malmegrim, K. C. R., Lima-Júnior, J. R., Arruda, L. C. M., De Azevedo, J. T. C., De Oliveira, G. L. V., & Oliveira, M. C. (2018). Autologous hematopoietic stem cell transplantation for autoimmune diseases: From mechanistic insights to biomarkers. Frontiers in Immunology, 9(NOV), 372252. https://doi.org/10.3389/FIMMU.2018.02602/BIBTEX
Trounson, A., & McDonald, C. (2015). Stem Cell Therapies in Clinical Trials: Progress and Challenges. Cell Stem Cell, 17(1), 11–22. https://doi.org/10.1016/J.STEM.2015.06.007
, 181. Yoshida, T., Washio, K., Iwata, T., Okano, T., & Ishikawa, I. (2012). Current Status and Future Development of Cell Transplantation Therapy for Periodontal Tissue Regeneration. International Journal of Dentistry, 2012(1), 307024. https://doi.org/10.1155/2012/307024
, 182. Herberts, C. A., Kwa, M. S. G., & Hermsen, H. P. H. (2011). Risk factors in the development of stem cell therapy. Journal of Translational Medicine, 9(1), 1–14. https://doi.org/10.1186/1479-5876-9-29/TABLES/2
Morizane, A. (2023). Cell therapy for Parkinson’s disease with induced pluripotent stem cells. Inflammation and Regeneration, 43(1), 1–5. https://doi.org/10.1186/S41232-023-00269-3/FIGURES/2
Gur, H., Krauthgamer, R., Berrebi, A., Klein, T., Nagler, A., Tabilio, A., Martelli, M. F., & Reisner, Y. (2002). Tolerance induction by megadose hematopoietic progenitor cells: expansion of veto cells by short-term culture of purified human CD34+ cells. Blood, 99(11), 4174–4181. https://doi.org/10.1182/BLOOD.V99.11.4174
Haworth, R., & Sharpe, M. (2015). The Issue of Immunology in Stem Cell Therapies: a Pharmaceutical Perspective. Regenerative Medicine, 10(3), 231–234. https://doi.org/10.2217/RME.14.50
, 187. He, J., Rong, Z., Fu, X., & Xu, Y. (2017). A Safety Checkpoint to Eliminate Cancer Risk of the Immune Evasive Cells Derived from Human Embryonic Stem Cells. Stem Cells, 35(5), 1154–1161. https://doi.org/10.1002/STEM.2568
, 191, 192. Rao, M. (2007). Tumorigenesis and Embryonic Stem Cell-Derived Therapy. Https://Home.Liebertpub.Com/Scd. https://doi.org/10.1089/SCD.2007.9986
Shaw, P., Shizuru, J., Hoenig, M., & Veys, P. (2019). Conditioning Perspectives for Primary Immunodeficiency Stem Cell Transplants. Frontiers in Pediatrics, 7, 485952. https://doi.org/10.3389/FPED.2019.00434/BIBTEX
Maguire, G., & Friedman, P. (2020). The Safety of a Therapeutic Product Composed of a Combination of Stem Cell Released Molecules from Adipose Mesenchymal Stem Cells and Fibroblasts. BioRxiv, 2020.02.14.950055. https://doi.org/10.1101/2020.02.14.950055
Son, M. Y., Lee, M. O., Jeon, H., Seol, B., Kim, J. H., Chang, J. S., & Cho, Y. S. (2016). Generation and characterization of integration-free induced pluripotent stem cells from patients with autoimmune disease. Experimental & Molecular Medicine 2016 48:5, 48(5), e232–e232. https://doi.org/10.1038/emm.2016.27
Chen, G., & Lv, Y. (2017). Matrix elasticity-modified scaffold loaded with SDF-1α improves the in situ regeneration of segmental bone defect in rabbit radius. Scientific Reports 2017 7:1, 7(1), 1–12. https://doi.org/10.1038/s41598-017-01938-3
Morizane, A. (2023). Cell therapy for Parkinson’s disease with induced pluripotent stem cells. Inflammation and Regeneration, 43(1), 1–5. https://doi.org/10.1186/S41232-023-00269-3/FIGURES/2
Haworth, R., & Sharpe, M. (2015). The Issue of Immunology in Stem Cell Therapies: a Pharmaceutical Perspective. Regenerative Medicine, 10(3), 231–234. https://doi.org/10.2217/RME.14.50
Takahashi, J. (2020). iPS cell-based therapy for Parkinson’s disease: A Kyoto trial. Regenerative Therapy, 13, 18–22. https://doi.org/10.1016/J.RETH.2020.06.002
Botticelli, D., Mahadik, B., Quek, J., Vizetto-Duarte, C., Hin Teoh, S., & Choo, Y. (2024). Towards Stem Cell Therapy for Critical-Sized Segmental Bone Defects: Current Trends and Challenges on the Path to Clinical Translation. Journal of Functional Biomaterials 2024, Vol. 15, Page 145, 15(6), 145. https://doi.org/10.3390/JFB15060145
, 201. Mansnérus, J. A. (2016). Bioethical and legal perspectives on cell reprogramming technologies. Http://Dx.Doi.Org/10.1177/0968533216677860. https://doi.org/10.1177/0968533216677860
, 203, 204. Ghosh, Z., Wilson, K. D., Wu, Y., Hu, S., Quertermous, T., & Wu, J. C. (2010). Persistent Donor Cell Gene Expression among Human Induced Pluripotent Stem Cells Contributes to Differences with Human Embryonic Stem Cells. PLOS ONE, 5(2), e8975. https://doi.org/10.1371/JOURNAL.PONE.0008975
Tong, G., Izquierdo, P., & Raashid, R. A. (2017). Human Induced Pluripotent Stem Cells and the Modelling of Alzheimer’s Disease: The Human Brain Outside the Dish. The Open Neurology Journal, 11(1), 27–38. https://doi.org/10.2174/1874205X01711010027
, 206. Trounson, A., Thakar, R. G., Lomax, G., & Gibbons, D. (2011). Clinical trials for stem cell therapies. BMC Medicine, 9(1), 1–7. https://doi.org/10.1186/1741-7015-9-52/TABLES/2
Ter Horst, K. W. (2010). Stem Cell Therapy for Myocardial Infarction: Are We Missing Time? Cardiology, 117(1), 1–10. https://doi.org/10.1159/000318840
Park, Y. J., Koh, J., Gauna, A. E., Chen, S., & Cha, S. (2014). Identification of Regulatory Factors for Mesenchymal Stem Cell-Derived Salivary Epithelial Cells in a Co-Culture System. PLOS ONE, 9(11), e112158. https://doi.org/10.1371/JOURNAL.PONE.0112158
Holm, S. (2004). Stem Cell Transplantation and Ethics: A European Overview. Fetal Diagnosis and Therapy, 19(2), 113–118. https://doi.org/10.1159/000075132
Burningham, S., Ollenberger, A., & Caulfield, T. (2013). Commercialization and Stem Cell Research: A Review of Emerging Issues. Https://Home.Liebertpub.Com/Scd, 22(SUPPL.1), 80–84. https://doi.org/10.1089/SCD.2013.0317
Lukomska, B., Stanaszek, L., Zuba-Surma, E., Legosz, P., Sarzynska, S., & Drela, K. (2019). Challenges and Controversies in Human Mesenchymal Stem Cell Therapy. Stem Cells International, 2019(1), 9628536. https://doi.org/10.1155/2019/9628536
ipp, D. (2013). Direct-to-Consumer Stem Cell Marketing and Regulatory Responses. Stem Cells Translational Medicine, 2(9), 638–640. https://doi.org/10.5966/SCTM.2013-0040
Gao, J., & Gao, C. (2022). Development and regulation of stem cell-based therapies in China. Cell Proliferation, 55(8), e13217. https://doi.org/10.1111/CPR.13217
Devine, S. M. (2024). The Evolution of Hematopoietic Stem Cell Transplantation to Overcome Access Disparities: The Role of NMDP. Cells 2024, Vol. 13, Page 933, 13(11), 933. https://doi.org/10.3390/CELLS13110933
McCall, C. C., & Gallicchio, V. S. (2022). " The Use Of Stem Cells In The Surgical Treatment Of Cleft Palate ". Journal of Stem Cell Research, 3(3), 1–11. https://doi.org/10.52793/JSCR.2021.3(3)-41
Ueda, K., Sanada, S., & Uemura, N. (2020). Advanced Medical Care Program for the Rapid Introduction of Healthcare Technologies to the National Health Insurance System in Japan. Clinical and Translational Science, 13(4), 700–706. https://doi.org/10.1111/CTS.12751
Younis, M., Lalouani, W., Lasla, N., Emokpae, L., & Abdallah, M. (2022). Blockchain-Enabled and Data-Driven Smart Healthcare Solution for Secure and Privacy-Preserving Data Access. IEEE Systems Journal, 16(3), 3746–3757. https://doi.org/10.1109/JSYST.2021.3092519
Dennis, B. B., Naji, L., Jajarmi, Y., Ahmed, A., & Kim, D. (2021). New hope for hepatitis C virus: Summary of global epidemiologic changes and novel innovations over 20 years. World Journal of Gastroenterology, 27(29), 4818–4830. https://doi.org/10.3748/wjg.v27.i29.4818
Dore, G. J., Valerio, H., & Grebely, J. (2020). Creating an environment for equitable access to direct-acting antiviral therapy for people who inject drugs with hepatitis C. Liver International, 40(10), 2353–2355. https://doi.org/10.1111/LIV.14661
Herbert, S., Rowbotham, N. J., Smith, S., Wilson, P., Elliott, Z. C., Leighton, P. A., Duff, A., & Smyth, A. R. (2022). Exploring the challenges of accessing medication for patients with cystic fibrosis. Thorax, 77(3), 295–297. https://doi.org/10.1136/THORAXJNL-2021-217140
Salazar-Mejía, C. E., Piñeiro-Martínez, A., Juárez-Villarreal, A. L., Jara-Rios, A. E., Ibarra-Alaniz, A. P., Wimer-Castillo, B. O., Hernández-Barajas, D., Vidal-Gutiérrez, O., Gómez-Guerra, L., & Zayas-Villanueva, O. A. (2022). Access to treatment among
Atkinson, A., Esenabhalu, V. E., Atkinson, A., & Esenabhalu, V. E. (2022). Hashimoto’s Disease: Associated Thyroid Gland Disorders, Pharmacological, and Nutritional Interventions. Open Journal of Endocrine and Metabolic Diseases, 12(10), 211–224. https://doi.org/10.4236/OJEMD.2022.1210016
Noh, S., Jeon, S., Kim, E., Oh, U., Park, D., Park, S. H., Kim, S. W., Pané, S., Nelson, B. J., Kim, J. young, & Choi, H. (2022). A Biodegradable Magnetic Microrobot Based on Gelatin Methacrylate for Precise Delivery of Stem Cells with Mass Production Capability. Small, 18(25), 2107888. https://doi.org/10.1002/SMLL.202107888
Ma, R., Morshed, S. A., Latif, R., & Davies, T. F. (2021). A Stem Cell Surge During Thyroid Regeneration. Frontiers in Endocrinology, 11, 606269. https://doi.org/10.3389/FENDO.2020.606269/BIBTEX
Lhommée, E., Batir, A., Quesada, J. L., Ardouin, C., Fraix, V., Seigneuret, E., Chabardès, S., Benabid, A. L., Pollak, P., & Krack, P. (2014). Dopamine and the biology of creativity: Lessons from Parkinson’s disease. Frontiers in Endocrinology, 5(APR), 87780. https://doi.org/10.3389/FENDO.2014.00055/BIBTEX
Kotton, D. N., & Nilsson, M. (2022). Editorial: Progenitors and Stem Cells in Thyroid Development, Disease, and Regeneration. Frontiers in Endocrinology, 13, 848559. https://doi.org/10.3389/FENDO.2022.848559/BIBTEX
Preto, A., Cameselle-Teijeiro, J., Moldes-Boullosa, J., Soares, P., Cameselle-Teijeiro, J. F., Silva, P., Reis-Filho, J. S., Reyes-Santías, R. M., Alfonsín-Barreiro, N., Forteza, J., & Sobrinho-Simoes, M. (2004). Telomerase expression and proliferative activity suggest a stem cell role for thyroid solid cell nests. Modern Pathology, 17(7), 819–826. https://doi.org/10.1038/MODPATHOL.3800124
Qiu, K., Li, K., Zeng, T., Liao, Y., Min, J., Zhang, N., Peng, M., Kong, W., & Chen, L. L. (2021). Integrative Analyses of Genes Associated with Hashimoto’s Thyroiditis. Journal of Immunology Research, 2021. https://doi.org/10.1155/2021/8263829
Chhabra, P., & Brayman, K. L. (2013). Stem Cell Therapy to Cure Type 1 Diabetes: From Hype to Hope. Stem Cells Translational Medicine, 2(5), 328–336. https://doi.org/10.5966/SCTM.2012-0116
Choi, E. W. (2009). Adult Stem Cell Therapy for Autoimmune Disease. International Journal of Stem Cells, 2(2), 122–128. https://doi.org/10.15283/IJSC.2009.2.2.122
Lin, H., Shabbir, A., Molnar, M., Yang, J., Marion, S., Canty, J. M., & Lee, T. (2008). Adenoviral expression of vascular endothelial growth factor splice variants differentially regulate bone marrow-derived mesenchymal stem cells. Journal of Cellular Physiology, 216(2), 458–468. https://doi.org/10.1002/JCP.21414
Selvakumar, S. C., Preethi, K. A., Ross, K., Tusubira, D., Khan, M. W. A., Mani, P., Rao, T. N., & Sekar, D. (2022). CRISPR/Cas9 and next generation sequencing in the personalized treatment of Cancer. Molecular Cancer, 21(1), 1–14. https://doi.org/10.1186/S12943-022-01565-1/FIGURES/4
Patel, S. A., King, C. C., Lim, P. K., Habiba, U., Dave, M., Porecha, R., & Rameshwar, P. (2012). Personalizing Stem Cell Research and Therapy: The Arduous Road Ahead or Missed Opportunity? Current Pharmacogenomics and Personalized Medicine, 8(1), 25–36. https://doi.org/10.2174/1875692111008010025
Pham, P., & Pham, P. Van. (2016). Stem cell drugs: the next generation of pharmaceutical products. Biomedical Research and Therapy, 3(10), 857–871. https://doi.org/10.15419/bmrat.v3i10.128
Park, J.-C., & Mook-Jung, I. (2022). Toward brain organoid-based precision medicine in neurodegenerative diseases. Organoid, 2, e21. https://doi.org/10.51335/ORGANOID.2022.2.E21
Basiri, A., Mansouri, F., Azari, A., Ranjbarvan, P., Zarein, F., Heidari, A., & Golchin, A. (2021). Stem Cell Therapy Potency in Personalizing Severe COVID-19 Treatment. Stem Cell Reviews and Reports 2021 17:1, 17(1), 193–213. https://doi.org/10.1007/S12015-020-10110-W
Zhou, G. P., Jiang, Y. Z., Sun, L. Y., & Zhu, Z. J. (2020). Therapeutic effect and safety of stem cell therapy for chronic liver disease: A systematic review and meta-analysis of randomized controlled trials. Stem Cell Research and Therapy, 11(1), 1–19. https://doi.org/10.1186/S13287-020-01935-W/FIGURES/10
Journals, A. S. P. | O. A. J. | R. (2024). Potential Stem Cell Treatment for Common Hip Conditions: Osteoarthritis, Osteonecrosis and Gluteal Tendinopathy. Journal of Regenerative Medicine & Biology Research, 1–12. https://doi.org/10.46889/JRMBR.2024.5201
Benderitter, M., Caviggioli, F., Chapel, A., Coppes, R. P., Guha, C., Klinger, M., Malard, O., Stewart, F., Tamarat, R., Luijk, P. Van, & Limoli, C. L. (2014). Stem Cell Therapies for the Treatment of Radiation-Induced Normal Tissue Side Effects. Https://Home.Liebertpub.Com/Ars, 21(2), 338–355. https://doi.org/10.1089/ARS.2013.5652
, 241. Banaszczyk, K., Maliszewska, A., & Owsiany, M. (2019). The role of selenium in the treatment of Hashimoto’s disease. Pediatria i Medycyna Rodzinna, 15(2), 125–130. https://doi.org/10.15557/PIMR.2019.0021
Oueslati, I., Salhi, S., Yazidi, M., Chaker, F., & Chihaoui, M. (2022). A case of Hashimoto’s thyroiditis following Graves’ disease. Clinical Case Reports, 10(10), e6466. https://doi.org/10.1002/CCR3.6466
Li, Y., Zhou, G., Ozaki, T., Nishihara, E., Matsuzuka, F., Bai, Y., Liu, Z., Taniguchi, E., Miyauchi, A., & Kakudo, K. (2012). Distinct histopathological features of Hashimoto’s thyroiditis with respect to IgG4-related disease. Modern Pathology, 25(8), 1086–1097. https://doi.org/10.1038/MODPATHOL.2012.68
Li, Y., Bai, Y., Liu, Z., Ozaki, T., Taniguchi, E., Mori, I., Nagayama, K., Nakamura, H., & Kakudo, K. (2009). Immunohistochemistry of IgG4 can help subclassify Hashimoto’s autoimmune thyroiditis. Pathology International, 59(9), 636–641. https://doi.org/10.1111/J.1440-1827.2009.02419.X
Pyzik, A., Grywalska, E., Matyjaszek-Matuszek, B., & Roliński, J. (2015). Immune Disorders in Hashimoto’s Thyroiditis: What Do We Know So Far? Journal of Immunology Research, 2015(1), 979167. https://doi.org/10.1155/2015/979167
Novita, S. M., Wironegoro, R., Fauziah, D., Novita, S. M., Wironegoro, R., & Fauziah, D. (2022). The clinical, laboratory and anatomical pathology profiles of Hashimoto’s Thyroiditis patients at Dr. Soetomo General Academic Hospital Surabaya 2015 – 2020. Https://Wjarr.Com/Sites/Default/Files/WJARR-2022-1363.Pdf, 16(3), 518–525. https://doi.org/10.30574/WJARR.2022.16.3.1363
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Oliwia Kozyra, Oliwia Bochenek, Aleksandra Nowak, Jessica Kałuża, Adrian Konaszczuk, Klaudia Ratyna, Mateusz Koper, Zofia Szypuła, Katarzyna Paluch, Małgorzata Skarbek
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 60
Number of citations: 0