Exploring the Therapeutic Potential of Nicotinamide Mononucleotide: A Review of Safety and Efficacy with Emphasis on Diabetes
DOI:
https://doi.org/10.12775/QS.2024.17.53437Keywords
Nicotinamide mononucleotide, Nicotinamide adenine dinucleotide, NMN supplementationAbstract
Introduction: Nicotinamide mononucleotide (NMN) is a supplement that can boost nicotinamide adenine dinucleotide (NAD+) levels in the body, which is crucial for maintaining energy balance and stress response. Declining NAD+ levels with age contribute to aging and related diseases, making NMN supplementation a potential solution. Despite its potential benefits, NMN’s safety and efficacy need further investigation.
Aim of the Study: This study aimed to analyze recent research on NMN supplementation regarding its safety and efficacy in improving human health, especially in patients with diabetes and prediabetes, and to suggest potential research directions for this compound.
Methods and Materials: Extensive research was conducted using PubMed and Google Scholar, focusing on literature from the past 5 years, primarily on randomized controlled trials. The databases were searched using the term “nicotinamide mononucleotide” to gather articles, and references from selected articles were included.
Conclusion: A beneficial direction for NMN research is an in-depth analysis of its effects on skeletal muscles in both healthy individuals and those with diabetes. Studies on larger groups, with higher doses, and over longer periods are crucial to determine the optimal supplementation protocol and assess individual variability in NMN’s metabolic effects.
References
Akasaka, H., Nakagami, H., Sugimoto, K., Yasunobe, Y., Minami, T., Fujimoto, T., Yamamoto, K., Hara, C., Shiraki, A., Nishida, K., Asano, K., Kanou, M., Yamana, K., Imai, S. ichiro, & Rakugi, H. (2023). Effects of nicotinamide mononucleotide on older patients with diabetes and impaired physical performance: A prospective, placebo-controlled, double-blind study. Geriatrics and Gerontology International, 23(1), 38–43. https://doi.org/10.1111/ggi.14513
Alamouti, B., & Funk, J. (2003). Retinal thickness decreases with age: an OCT study. In Br J Ophthalmol (Vol. 87). www.bjophthalmol.com
Arslan, N. P., Taskin, M., & Keles, O. N. (2024). Nicotinamide Mononucleotide and Nicotinamide Riboside Reverse Ovarian Aging in Rats Via Rebalancing Mitochondrial Fission and Fusion Mechanisms. Pharmaceutical Research, 41(5), 921–935. https://doi.org/10.1007/s11095-024-03704-3
Bayliak, M. M., & Lushchak, V. I. (2021). Pleiotropic effects of alpha-ketoglutarate as a potential anti-ageing agent. Ageing Research Reviews, 66, 101237. https://doi.org/10.1016/j.arr.2020.101237
Cowan, A. E., Tooze, J. A., Gahche, J. J., Eicher-Miller, H. A., Guenther, P. M., Dwyer, J. T., Potischman, N., Bhadra, A., Carroll, R. J., & Bailey, R. L. (2022). Trends in Overall and Micronutrient-Containing Dietary Supplement Use in US Adults and Children, NHANES 2007–2018. The Journal of Nutrition, 152(12), 2789. https://doi.org/10.1093/JN/NXAC168
Guest, P. C. (Ed.). (2019). Reviews on Biomarker Studies in Aging and Anti-Aging Research (Vol. 1178). Springer International Publishing. https://doi.org/10.1007/978-3-030-25650-0
Hargreaves, I. P., & Mantle, D. (2019). Coenzyme Q10 Supplementation in Fibrosis and Aging (pp. 103–112). https://doi.org/10.1007/978-3-030-25650-0_6
Hyman, B. T., & Yuan, J. (2012). Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology. Nature Reviews Neuroscience, 13(6), 395–406. https://doi.org/10.1038/nrn3228
Igarashi, M., Nakagawa-Nagahama, Y., Miura, M., Kashiwabara, K., Yaku, K., Sawada, M., Sekine, R., Fukamizu, Y., Sato, T., Sakurai, T., Sato, J., Ino, K., Kubota, N., Nakagawa, T., Kadowaki, T., & Yamauchi, T. (2022). Chronic nicotinamide mononucleotide supplementation elevates blood nicotinamide adenine dinucleotide levels and alters muscle function in healthy older men. Npj Aging, 8(1). https://doi.org/10.1038/s41514-022-00084-z
Imai, S. ichiro, & Guarente, L. (2014). NAD+ and sirtuins in aging and disease. In Trends in Cell Biology (Vol. 24, Issue 8, pp. 464–471). Elsevier Ltd. https://doi.org/10.1016/j.tcb.2014.04.002
Katayoshi, T., Uehata, S., Nakashima, N., Nakajo, T., Kitajima, N., Kageyama, M., & Tsuji-Naito, K. (2023). Nicotinamide adenine dinucleotide metabolism and arterial stiffness after long-term nicotinamide mononucleotide supplementation: a randomized, double-blind, placebo-controlled trial. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-29787-3
Kawamura, T., Singh Mallah, G., Ardalan, M., Chumak, T., Svedin, P., Jonsson, L., Jabbari Shiadeh, S. M., Goretta, F., Ikeda, T., Hagberg, H., Sandberg, M., & Mallard, C. (2023). Therapeutic Effect of Nicotinamide Mononucleotide for Hypoxic–Ischemic Brain Injury in Neonatal Mice. ASN Neuro, 15. https://doi.org/10.1177/17590914231198983
Kim, M., Seol, J., Sato, T., Fukamizu, Y., Sakurai, T., & Okura, T. (2022). Effect of 12-Week Intake of Nicotinamide Mononucleotide on Sleep Quality, Fatigue, and Physical Performance in Older Japanese Adults: A Randomized, Double-Blind Placebo-Controlled Study. Nutrients, 14(4). https://doi.org/10.3390/nu14040755
Kuerec, A. H., Wang, W., Yi, L., Tao, R., Lin, Z., Vaidya, A., Pendse, S., Thasma, S., Andhalkar, N., Avhad, G., Kumbhar, V., & Maier, A. B. (2024). Towards personalized nicotinamide mononucleotide (NMN) supplementation: Nicotinamide adenine dinucleotide (NAD) concentration. Mechanisms of Ageing and Development, 218. https://doi.org/10.1016/j.mad.2024.111917
Li, X., Yang, H., Jin, H., Turkez, H., Ozturk, G., Doganay, H. L., Zhang, C., Nielsen, J., Uhlén, M., Borén, J., & Mardinoglu, A. (2023). The acute effect of different NAD+ precursors included in the combined metabolic activators. Free Radical Biology and Medicine, 205, 77–89. https://doi.org/10.1016/j.freeradbiomed.2023.05.032
Liao, B., Zhao, Y., Wang, D., Zhang, X., Hao, X., & Hu, M. (2021). Nicotinamide mononucleotide supplementation enhances aerobic capacity in amateur runners: a randomized, double-blind study. Journal of the International Society of Sports Nutrition, 18(1). https://doi.org/10.1186/s12970-021-00442-4
Lins, L., & Carvalho, F. M. (2016). SF-36 total score as a single measure of health-related quality of life: Scoping review. SAGE Open Medicine, 4. https://doi.org/10.1177/2050312116671725/FORMAT/EPUB
Mamoshina, P., Kochetov, K., Putin, E., Cortese, F., Aliper, A., Lee, W.-S., Ahn, S.-M., Uhn, L., Skjodt, N., Kovalchuk, O., Scheibye-Knudsen, M., & Zhavoronkov, A. (2018). Biological Sciences cite as. J Gerontol A Biol Sci Med Sci, 73(11), 1482–1490. https://doi.org/10.1093/gerona/gly005
Marois, G., Bélanger, A., & Lutz, W. (2020). Population aging, migration, and productivity in Europe. 117(14), 7690–7695. https://doi.org/10.1073/pnas.1918988117/-/DCSupplemental
Mills, K. F., Yoshida, S., Stein, L. R., Grozio, A., Kubota, S., Sasaki, Y., Redpath, P., Migaud, M. E., Apte, R. S., Uchida, K., Yoshino, J., & Imai, S. ichiro. (2016). Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice. Cell Metabolism, 24(6), 795–806. https://doi.org/10.1016/j.cmet.2016.09.013
Milton, S. G., Robinson, K., Ma, J., Wei, B., Poon, I. O., & Liang, D. (2013). Biotransformation and pharmacokinetics of inositol hexanicotinate in rats. Xenobiotica; the Fate of Foreign Compounds in Biological Systems, 43(9), 817–822. https://doi.org/10.3109/00498254.2012.762591
Nadeeshani, H., Li, J., Ying, T., Zhang, B., & Lu, J. (2022). Nicotinamide mononucleotide (NMN) as an anti-aging health product – Promises and safety concerns. In Journal of Advanced Research (Vol. 37, pp. 267–278). Elsevier B.V. https://doi.org/10.1016/j.jare.2021.08.003
Octavia, Y., Tocchetti, C. G., Gabrielson, K. L., Janssens, S., Crijns, H. J., & Moens, A. L. (2012). Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. Journal of Molecular and Cellular Cardiology, 52(6), 1213–1225. https://doi.org/10.1016/j.yjmcc.2012.03.006
Okabe, K., Yaku, K., Uchida, Y., Fukamizu, Y., Sato, T., Sakurai, T., Tobe, K., & Nakagawa, T. (2022). Oral Administration of Nicotinamide Mononucleotide Is Safe and Efficiently Increases Blood Nicotinamide Adenine Dinucleotide Levels in Healthy Subjects. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.868640
Papatesta, E. M., Kanellou, A., Peppa, E., & Trichopoulou, A. (2023). Is Dietary (Food) Supplement Intake Reported in European National Nutrition Surveys? In Nutrients (Vol. 15, Issue 24). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/nu15245090
Pencina, K. M., Lavu, S., dos Santos, M., Beleva, Y. M., Cheng, M., Livingston, D., & Bhasin, S. (2023). MIB-626, an Oral Formulation of a Microcrystalline Unique Polymorph of β-Nicotinamide Mononucleotide, Increases Circulating Nicotinamide Adenine Dinucleotide and its Metabolome in Middle-Aged and Older Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 78(1), 90–96. https://doi.org/10.1093/gerona/glac049
Qiu, S., Shao, S., Zhang, Y., Zhang, Y., Yin, J., Hong, Y., Yang, J., Tan, X., & Di, C. (2024). Comparison of protective effects of nicotinamide mononucleotide and nicotinamide riboside on DNA damage induced by cisplatin in HeLa cells. Biochemistry and Biophysics Reports, 37. https://doi.org/10.1016/j.bbrep.2024.101655
Ramsey, K. M., Mills, K. F., Satoh, A., & Imai, S. I. (2008). Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice. Aging Cell, 7(1), 78–88. https://doi.org/10.1111/j.1474-9726.2007.00355.x
She, J., Sheng, R., & Qin, Z.-H. (2021). Pharmacology and Potential Implications of Nicotinamide Adenine Dinucleotide Precursors. Aging and Disease, 12(8), 1879. https://doi.org/10.14336/AD.2021.0523
Smirnov, D., Eremenko, E., Stein, D., Kaluski, S., Jasinska, W., Cosentino, C., Martinez-Pastor, B., Brotman, Y., Mostoslavsky, R., Khrameeva, E., & Toiber, D. (2023). SIRT6 is a key regulator of mitochondrial function in the brain. Cell Death and Disease, 14(1). https://doi.org/10.1038/s41419-022-05542-w
Song, Q., Zhou, X., Xu, K., Liu, S., Zhu, X., & Yang, J. (2023). The Safety and Antiaging Effects of Nicotinamide Mononucleotide in Human Clinical Trials: an Update. Advances in Nutrition, 14(6), 1416–1435. https://doi.org/10.1016/j.advnut.2023.08.008
Warsito, M. F., & Kusumawati, I. (2019). The Impact of Herbal Products in the Prevention, Regeneration and Delay of Skin Aging (pp. 155–174). https://doi.org/10.1007/978-3-030-25650-0_9
Welsh, C. E., Matthews, F. E., & Jagger, C. (2021). Trends in life expectancy and healthy life years at birth and age 65 in the UK, 2008–2016, and other countries of the EU28: An observational cross-sectional study. The Lancet Regional Health - Europe, 2. https://doi.org/10.1016/j.lanepe.2020.100023
Wen, F., Xu, A., Wei, W., Yang, S., Xi, Z., Ge, Y., Wu, S., & Ju, Z. (2024). Nicotinamide Mononucleotide Supplementation Alleviates Doxorubicin-Induced Multi-Organ Fibrosis. International Journal of Molecular Sciences, 25(10). https://doi.org/10.3390/ijms25105303
Yaku, K., Okabe, K., & Nakagawa, T. (2018). NAD metabolism: Implications in aging and longevity. In Ageing Research Reviews (Vol. 47, pp. 1–17). Elsevier Ireland Ltd. https://doi.org/10.1016/j.arr.2018.05.006
Yang, H., Antoine, D. J., Andersson, U., & Tracey, K. J. (2013). The many faces of HMGB1: molecular structure-functional activity in inflammation, apoptosis, and chemotaxis. Journal of Leukocyte Biology, 93(6), 865–873. https://doi.org/10.1189/jlb.1212662
Yi, L., Maier, A. B., Tao, R., Lin, Z., Vaidya, A., Pendse, S., Thasma, S., Andhalkar, N., Avhad, G., & Kumbhar, V. (2023). The efficacy and safety of β-nicotinamide mononucleotide (NMN) supplementation in healthy middle-aged adults: a randomized, multicenter, double-blind, placebo-controlled, parallel-group, dose-dependent clinical trial. GeroScience, 45(1), 29–43. https://doi.org/10.1007/s11357-022-00705-1
Yoshino, J., Mills, K. F., Yoon, M. J., & Imai, S. I. (2011). Nicotinamide mononucleotide, a key NAD + intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metabolism, 14(4), 528–536. https://doi.org/10.1016/j.cmet.2011.08.014
Yoshino, M., Yoshino, J., Kayser, B. D., Patti, G. J., Franczyk, M. P., Mills, K. F., Sindelar, M., Pietka, T., Patterson, B. W., Imai, S. I., & Klein, S. (2021). Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women. Science, 372(6547), 1224–1229. https://doi.org/10.1126/science.abe9985
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Hubert Gugulski, Michał Andrzej Kozicz, Szymon Rudawski, Łukasz Wójcik, Magdalena Zięba, Ilona Jastrzębska, Michał Bado, Patrycja Nowoświat, Paulina Cuper, Krzysztof Bilecki
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 81
Number of citations: 0