What role do environmental factors play in the development of neurodegenerative diseases? A narrative review
DOI:
https://doi.org/10.12775/QS.2024.18.53301Keywords
Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, neurodegenerative diseases, environementAbstract
Introduction and purposes: Degenerative diseases of the nervous system, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS). Environmental influences are significant contributors to the development of these conditions. The primary objective of this research was to examine key environmental factors that are suspected of their impact on the development of diseases, specifically lifestyle, medical conditions, diet and exposure to environmental pollution.
Materials and Methods: A systematic literature search was conducted using PubMed and Google Scholar. The search employed terms such as 'Alzheimer's disease,' 'Parkinson disease,' 'amyotrophic lateral sclerosis,' 'environment,' 'pollution,' 'diet,' 'traumatic brain injury,' 'alcohol,' 'obesity,' 'lifestyle factors'. The search included articles published from 2014 to 2024.
Results: Among environmental factors with regard to lifestyle choices, a healthy diet has a protective effect against these diseases, while alcohol consumption was not clearly categorised as harmful or protective. Among past illnesses, an increase in AD, PD after head injury was confirmed, but more research is required as to the impact on ALS incidence. Lipid metabolism disorders affect ALS morbidity, for the AD and PD, studies do not reach consensus. Similarly, with regard to body weight, studies do not clearly indicate whether it is relevant. On the contrary, when it comes to pollution, a lot of studies showed a correlation.
Conclusion: In summary, research studies varied in size and quality, so caution must be exercised in drawing conclusions. This review suggests that there is a relationship with the environment, and future research may focus on exploring these connections.
References
GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019 [published correction appears in Lancet. 2020 Nov 14;396(10262):1562]. Lancet. 2020;396(10258):1204-1222. https://doi.org/10.1016/S0140-6736(20)30925-9
GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(5):459-480. https://doi.org/10.1016/S1474-4422(18)30499-X
Alzheimer’s Disease International, 2019. www.alz.co.uk/research/statistics.
Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission [published correction appears in Lancet. 2023 Sep 30;402(10408):1132]. Lancet. 2020;396(10248):413-446. https://doi.org/10.1016/S0140-6736(20)30367-6
Gan L, Cookson MR, Petrucelli L, La Spada AR. Converging pathways in neurodegeneration, from genetics to mechanisms. Nat Neurosci. 2018;21(10):1300-1309. https://doi.org/10.1038/s41593-018-0237-7
Killin LO, Starr JM, Shiue IJ, Russ TC. Environmental risk factors for dementia: a systematic review. BMC Geriatr. 2016;16(1):175. Published 2016 Oct 12. https://doi.org/10.1186/s12877-016-0342-y
Henderson AS. The risk factors for Alzheimer's disease: a review and a hypothesis. Acta Psychiatr Scand. 1988;78(3):257-275. https://doi.org/10.1111/j.1600-0447.1988.tb06336.x
Hersi M, Irvine B, Gupta P, Gomes J, Birkett N, Krewski D. Risk factors associated with the onset and progression of Alzheimer's disease: A systematic review of the evidence. Neurotoxicology. 2017;61:143-187. https://doi.org/10.1016/j.neuro.2017.03.006
Bruns J, Jr, Hauser WA. The epidemiology of traumatic brain injury: a review. Epilepsia. 2003;44:2–10.
Fann JR, Ribe AR, Pedersen HS, et al. Long-term risk of dementia among people with traumatic brain injury in Denmark: a population-based observational cohort study. Lancet Psychiatry. 2018;5(5):424-431. https://doi.org/10.1016/S2215-0366(18)30065-8
Nordström A, Nordström P. Traumatic brain injury and the risk of dementia diagnosis: A nationwide cohort study. PLoS Med. 2018;15(1):e1002496. Published 2018 Jan 30. https://doi.org/10.1371/journal.pmed.1002496
Tolppanen AM, Taipale H, Hartikainen S. Head or brain injuries and Alzheimer's disease: A nested case-control register study. Alzheimers Dement. 2017;13(12):1371-1379. https://doi.org/10.1016/j.jalz.2017.04.010
Tully PJ, Hanon O, Cosh S, Tzourio C. Diuretic antihypertensive drugs and incident dementia risk: a systematic review, meta-analysis and meta-regression of prospective studies. J Hypertens. 2016;34(6):1027-1035. https://doi.org/10.1097/HJH.0000000000000868
Ding J, Davis-Plourde KL, Sedaghat S, et al. Antihypertensive medications and risk for incident dementia and Alzheimer's disease: a meta-analysis of individual participant data from prospective cohort studies. Lancet Neurol. 2020;19(1):61-70. https://doi.org/10.1016/S1474-4422(19)30393-X
Lane CA, Barnes J, Nicholas JM, et al. Associations Between Vascular Risk Across Adulthood and Brain Pathology in Late Life: Evidence From a British Birth Cohort. JAMA Neurol. 2020;77(2):175-183. https://doi.org/10.1001/jamaneurol.2019.3774
Gustavsson AM, van Westen D, Stomrud E, Engström G, Nägga K, Hansson O. Midlife Atherosclerosis and Development of Alzheimer or Vascular Dementia. Ann Neurol. 2020;87(1):52-62. https://doi.org/10.1002/ana.25645
Gottesman RF, Mosley TH, Knopman DS, et al. Association of Intracranial Atherosclerotic Disease With Brain β-Amyloid Deposition: Secondary Analysis of the ARIC Study [published correction appears in JAMA Neurol. 2020 Mar 1;77(3):394]. JAMA Neurol. 2020;77(3):350-357. https://doi.org/10.1001/jamaneurol.2019.4339
Kivimäki M, Singh-Manoux A, Pentti J, et al. Physical inactivity, cardiometabolic disease, and risk of dementia: an individual-participant meta-analysis. BMJ. 2019;365:l1495. Published 2019 Apr 17. https://doi.org/10.1136/bmj.l1495
Tolppanen AM, Ngandu T, Kåreholt I, et al. Midlife and late-life body mass index and late-life dementia: results from a prospective population-based cohort. J Alzheimers Dis. 2014;38(1):201-209. https://doi.org/10.3233/JAD-130698
Sun Z, Wang ZT, Sun FR, et al. Late-life obesity is a protective factor for prodromal Alzheimer's disease: a longitudinal study. Aging (Albany NY). 2020;12(2):2005-2017. https://doi.org/10.18632/aging.102738
Pérez-González R, Antequera D, Vargas T, Spuch C, Bolós M, Carro E. Leptin induces proliferation of neuronal progenitors and neuroprotection in a mouse model of Alzheimer's disease. J Alzheimers Dis. 2011;24 Suppl 2:17-25. https://doi.org/10.3233/JAD-2011-102070
Pistollato F, Iglesias RC, Ruiz R, et al. Nutritional patterns associated with the maintenance of neurocognitive functions and the risk of dementia and Alzheimer's disease: A focus on human studies. Pharmacol Res. 2018;131:32-43. https://doi.org/10.1016/j.phrs.2018.03.012
Anastasiou CA, Yannakoulia M, Kosmidis MH, et al. Mediterranean diet and cognitive health: Initial results from the Hellenic Longitudinal Investigation of Ageing and Diet. PLoS One. 2017;12(8):e0182048. Published 2017 Aug 1. https://doi.org/10.1371/journal.pone.0182048
Martínez-Lapiscina EH, Clavero P, Toledo E, et al. Mediterranean diet improves cognition: the PREDIMED-NAVARRA randomised trial. J Neurol Neurosurg Psychiatry. 2013;84(12):1318-1325. https://doi.org/10.1136/jnnp-2012-304792
Tangney CC, Li H, Wang Y, et al. Relation of DASH- and Mediterranean-like dietary patterns to cognitive decline in older persons. Neurology. 2014;83(16):1410-1416. https://doi.org/10.1212/WNL.0000000000000884
Wengreen H, Munger RG, Cutler A, et al. Prospective study of Dietary Approaches to Stop Hypertension- and Mediterranean-style dietary patterns and age-related cognitive change: the Cache County Study on Memory, Health and Aging. Am J Clin Nutr. 2013;98(5):1263-1271. https://doi.org/10.3945/ajcn.112.051276
Morris MC, Tangney CC, Wang Y, et al. MIND diet slows cognitive decline with aging. Alzheimers Dement. 2015;11(9):1015-1022. https://doi.org/10.1016/j.jalz.2015.04.011
McEvoy CT, Guyer H, Langa KM, Yaffe K. Neuroprotective Diets Are Associated with Better Cognitive Function: The Health and Retirement Study. J Am Geriatr Soc. 2017;65(8):1857-1862. https://doi.org/10.1111/jgs.14922
Morris MC. Nutrition and risk of dementia: overview and methodological issues. Ann N Y Acad Sci. 2016;1367(1):31-37. https://doi.org/10.1111/nyas.13047
Schelke MW, Hackett K, Chen JL, et al. Nutritional interventions for Alzheimer's prevention: a clinical precision medicine approach. Ann N Y Acad Sci. 2016;1367(1):50-56. https://doi.org/10.1111/nyas.13070
Rehm J, Hasan OSM, Black SE, Shield KD, Schwarzinger M. Alcohol use and dementia: a systematic scoping review. Alzheimers Res Ther. 2019;11(1):1. Published 2019 Jan 5. https://doi.org/10.1186/s13195-018-0453-0
Anstey KJ, Ee N, Eramudugolla R, Jagger C, Peters R. A Systematic Review of Meta-Analyses that Evaluate Risk Factors for Dementia to Evaluate the Quantity, Quality, and Global Representativeness of Evidence. J Alzheimers Dis. 2019;70(s1):S165-S186. https://doi.org/10.3233/JAD-190181
Xu W, Tan L, Wang HF, et al. Meta-analysis of modifiable risk factors for Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2015;86(12):1299-1306. https://doi.org/10.1136/jnnp-2015-310548
Anstey KJ, Mack HA, Cherbuin N. Alcohol consumption as a risk factor for dementia and cognitive decline: meta-analysis of prospective studies. Am J Geriatr Psychiatry. 2009;17(7):542-555. https://doi.org/10.1097/JGP.0b013e3181a2fd07
Langballe EM, Ask H, Holmen J, et al. Alcohol consumption and risk of dementia up to 27 years later in a large, population-based sample: the HUNT study, Norway. Eur J Epidemiol. 2015;30(9):1049-1056. https://doi.org/10.1007/s10654-015-0029-2
Weyerer S, Schäufele M, Wiese B, et al. Current alcohol consumption and its relationship to incident dementia: results from a 3-year follow-up study among primary care attenders aged 75 years and older. Age Ageing. 2011;40(4):456-463. https://doi.org/10.1093/ageing/afr007
Zhou R, Deng J, Zhang M, Zhou HD, Wang YJ. Association between bone mineral density and the risk of Alzheimer's disease. J Alzheimers Dis. 2011;24(1):101-108. https://doi.org/10.3233/JAD-2010-101467
Chowdhary N, Barbui C, Anstey KJ, et al. Reducing the Risk of Cognitive Decline and Dementia: WHO Recommendations. Front Neurol. 2022;12:765584. Published 2022 Jan 10. https://doi.org/10.3389/fneur.2021.765584
Moulton PV, Yang W. Air pollution, oxidative stress, and Alzheimer's disease. J Environ Public Health. 2012;2012:472751. https://doi.org/10.1155/2012/472751
Croze ML, Zimmer L. Ozone Atmospheric Pollution and Alzheimer's Disease: From Epidemiological Facts to Molecular Mechanisms. J Alzheimers Dis. 2018;62(2):503-522. https://doi.org/10.3233/JAD-170857
Oudin A, Forsberg B, Adolfsson AN, et al. Traffic-Related Air Pollution and Dementia Incidence in Northern Sweden: A Longitudinal Study. Environ Health Perspect. 2016;124(3):306-312. https://doi.org/10.1289/ehp.1408322
Adlard PA, Bush AI. Metals and Alzheimer's disease. J Alzheimers Dis. 2006;10(2-3):145-163. https://doi.org/10.3233/jad-2006-102-303
Colomina MT, Peris-Sampedro F. Aluminum and Alzheimer's Disease. Adv Neurobiol. 2017;18:183-197. https://doi.org/10.1007/978-3-319-60189-2_9
Huat TJ, Camats-Perna J, Newcombe EA, Valmas N, Kitazawa M, Medeiros R. Metal Toxicity Links to Alzheimer's Disease and Neuroinflammation. J Mol Biol. 2019;431(9):1843-1868. https://doi.org/10.1016/j.jmb.2019.01.018
Schwab AD, Thurston MJ, Machhi J, et al. Immunotherapy for Parkinson's disease. Neurobiol Dis. 2020;137:104760. https://doi.org/10.1016/j.nbd.2020.104760
Zhu, Y., Jung, W., Wang, F., & Che, C. (2020). Drug repurposing against Parkinson’s disease by text mining the scientific literature. Library Hi Tech, 38(4), 741–750. https://doi.org/10.1108/lht-08-2019-0170
Dorsey ER, Bloem BR. The Parkinson Pandemic-A Call to Action. JAMA Neurol. 2018;75(1):9-10. https://doi.org/10.1001/jamaneurol.2017.3299
Dorsey ER, Sherer T, Okun MS, Bloem BR. The Emerging Evidence of the Parkinson Pandemic. J Parkinsons Dis. 2018;8(s1):S3-S8. https://doi.org/10.3233/JPD-181474
Hall A, Bandres-Ciga S, Diez-Fairen M, Quinn JP, Billingsley KJ. Genetic Risk Profiling in Parkinson's Disease and Utilizing Genetics to Gain Insight into Disease-Related Biological Pathways. Int J Mol Sci. 2020;21(19):7332. Published 2020 Oct 4. https://doi.org/10.3390/ijms21197332
Cerri S, Mus L, Blandini F. Parkinson's Disease in Women and Men: What's the Difference?. J Parkinsons Dis. 2019;9(3):501-515. https://doi.org/10.3233/JPD-191683
Belvisi D, Pellicciari R, Fabbrini G, Tinazzi M, Berardelli A, Defazio G. Modifiable risk and protective factors in disease development, progression and clinical subtypes of Parkinson's disease: What do prospective studies suggest?. Neurobiol Dis. 2020;134:104671. https://doi.org/10.1016/j.nbd.2019.104671
Chromiec PA, Urbaś ZK, Jacko M, Kaczor JJ. The Proper Diet and Regular Physical Activity Slow Down the Development of Parkinson Disease. Aging Dis. 2021;12(7):1605-1623. Published 2021 Oct 1. https://doi.org/10.14336/AD.2021.0123
Crane PK, Gibbons LE, Dams-O'Connor K, et al. Association of Traumatic Brain Injury With Late-Life Neurodegenerative Conditions and Neuropathologic Findings. JAMA Neurol. 2016;73(9):1062-1069. https://doi.org/10.1001/jamaneurol.2016.1948
Impellizzeri D, Campolo M, Bruschetta G, et al. Traumatic Brain Injury Leads to Development of Parkinson's Disease Related Pathology in Mice. Front Neurosci. 2016;10:458. Published 2016 Oct 13. https://doi.org/10.3389/fnins.2016.00458
Balabandian M, Noori M, Lak B, Karimizadeh Z, Nabizadeh F. Traumatic brain injury and risk of Parkinson's disease: a meta-analysis. Acta Neurol Belg. 2023;123(4):1225-1239. https://doi.org/10.1007/s13760-023-02209-x
de Lau LM, Koudstaal PJ, Hofman A, Breteler MM. Serum cholesterol levels and the risk of Parkinson's disease. Am J Epidemiol. 2006;164(10):998-1002. https://doi.org/10.1093/aje/kwj283
Huang X, Abbott RD, Petrovitch H, Mailman RB, Ross GW. Low LDL cholesterol and increased risk of Parkinson's disease: prospective results from Honolulu-Asia Aging Study. Mov Disord. 2008;23(7):1013-1018. https://doi.org/10.1002/mds.22013
Hu G, Antikainen R, Jousilahti P, Kivipelto M, Tuomilehto J. Total cholesterol and the risk of Parkinson disease. Neurology. 2008;70(21):1972-1979. https://doi.org/10.1212/01.wnl.0000312511.62699.a8
Simon KC, Chen H, Schwarzschild M, Ascherio A. Hypertension, hypercholesterolemia, diabetes, and risk of Parkinson disease. Neurology. 2007;69(17):1688-1695. https://doi.org/10.1212/01.wnl.0000271883.45010.8a
Sääksjärvi K, Knekt P, Männistö S, et al. Reduced risk of Parkinson's disease associated with lower body mass index and heavy leisure-time physical activity. Eur J Epidemiol. 2014;29(4):285-292. https://doi.org/10.1007/s10654-014-9887-2
Kyrozis A, Ghika A, Stathopoulos P, Vassilopoulos D, Trichopoulos D, Trichopoulou A. Dietary and lifestyle variables in relation to incidence of Parkinson's disease in Greece. Eur J Epidemiol. 2013;28(1):67-77. https://doi.org/10.1007/s10654-012-9760-0
Abbott RD, Ross GW, White LR, et al. Midlife adiposity and the future risk of Parkinson's disease. Neurology. 2002;59(7):1051-1057. https://doi.org/10.1212/wnl.59.7.1051
Palacios N, Gao X, McCullough ML, et al. Obesity, diabetes, and risk of Parkinson's disease. Mov Disord. 2011;26(12):2253-2259. https://doi.org/10.1002/mds.23855
Savica R, Grossardt BR, Ahlskog JE, Rocca WA. Metabolic markers or conditions preceding Parkinson's disease: a case-control study. Mov Disord. 2012;27(8):974-979. https://doi.org/10.1002/mds.25016
Wang YL, Wang YT, Li JF, Zhang YZ, Yin HL, Han B. Body Mass Index and Risk of Parkinson's Disease: A Dose-Response Meta-Analysis of Prospective Studies. PLoS One. 2015;10(6):e0131778. Published 2015 Jun 29. https://doi.org/10.1371/journal.pone.0131778
Hu G, Jousilahti P, Nissinen A, Antikainen R, Kivipelto M, Tuomilehto J. Body mass index and the risk of Parkinson disease. Neurology. 2006;67(11):1955-1959. https://doi.org/10.1212/01.wnl.0000247052.18422.e5
Chen H, Zhang SM, Schwarzschild MA, Hernán MA, Willett WC, Ascherio A. Obesity and the risk of Parkinson's disease. Am J Epidemiol. 2004;159(6):547-555. https://doi.org/10.1093/aje/kwh059
Mischley LK, Lau RC, Bennett RD. Role of Diet and Nutritional Supplements in Parkinson's Disease Progression. Oxid Med Cell Longev. 2017;2017:6405278. https://doi.org/10.1155/2017/6405278
Olsson E, Byberg L, Höijer J, Kilander L, Larsson SC. Milk and Fermented Milk Intake and Parkinson's Disease: Cohort Study. Nutrients. 2020;12(9):2763. Published 2020 Sep 10. https://doi.org/10.3390/nu12092763
Hughes K.C., Gao X., Kim I.Y., Wang M., Weisskopf M.G., Schwarzschild M.A., Ascherio A. Intake of dairy foods and risk of Parkinson disease. Neurology. 2017;89:46–52. https://doi.org/ 10.1212/WNL.0000000000004057.
Torti M, Fossati C, Casali M, et al. Effect of family history, occupation and diet on the risk of Parkinson disease: A case-control study. PLoS One. 2020;15(12):e0243612. Published 2020 Dec 17. https://doi.org/10.1371/journal.pone.0243612
Okubo H, Miyake Y, Sasaki S, et al. Dietary patterns and risk of Parkinson's disease: a case-control study in Japan. Eur J Neurol. 2012;19(5):681-688. https://doi.org/10.1111/j.1468-1331.2011.03600.x
Liu YH, Jensen GL, Na M, et al. Diet Quality and Risk of Parkinson's Disease: A Prospective Study and Meta-Analysis. J Parkinsons Dis. 2021;11(1):337-347. https://doi.org/10.3233/JPD-202290
Ross GW, Abbott RD, Petrovitch H, et al. Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA. 2000;283(20):2674-2679. https://doi.org/10.1001/jama.283.20.2674
Liu R, Guo X, Park Y, et al. Caffeine intake, smoking, and risk of Parkinson disease in men and women. Am J Epidemiol. 2012;175(11):1200-1207. https://doi.org/10.1093/aje/kwr451
Hong CT, Chan L, Bai CH. The Effect of Caffeine on the Risk and Progression of Parkinson's Disease: A Meta-Analysis [published correction appears in Nutrients. 2023 Jan 30;15(3):]. Nutrients. 2020;12(6):1860. Published 2020 Jun 22. https://doi.org/10.3390/nu12061860
Zhang D, Jiang H, Xie J. Alcohol intake and risk of Parkinson's disease: a meta-analysis of observational studies. Mov Disord. 2014;29(6):819-822. https://doi.org/10.1002/mds.25863
Eriksson AK, Löfving S, Callaghan RC, Allebeck P. Alcohol use disorders and risk of Parkinson's disease: findings from a Swedish national cohort study 1972-2008. BMC Neurol. 2013;13:190. Published 2013 Dec 5. https://doi.org/10.1186/1471-2377-13-190
Trantham-Davidson H, Chandler LJ. Alcohol-induced alterations in dopamine modulation of prefrontal activity. Alcohol. 2015;49(8):773-779. https://doi.org/10.1016/j.alcohol.2015.09.001
Rotermund C, Reolon GK, Leixner S, Boden C, Bilbao A, Kahle PJ. Enhanced motivation to alcohol in transgenic mice expressing human α-synuclein. J Neurochem. 2017;143(3):294-305. https://doi.org/10.1111/jnc.14151
Paul KC, Chuang YH, Shih IF, et al. The association between lifestyle factors and Parkinson's disease progression and mortality. Mov Disord. 2019;34(1):58-66. https://doi.org/10.1002/mds.27577
Goldman SM. Environmental toxins and Parkinson's disease. Annu Rev Pharmacol Toxicol. 2014;54:141-164. https://doi.org/10.1146/annurev-pharmtox-011613-135937
GBD 2016 Parkinson's Disease Collaborators. Global, regional, and national burden of Parkinson's disease, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016 [published correction appears in Lancet Neurol. 2021 Dec;20(12):e7]. Lancet Neurol. 2018;17(11):939-953. https://doi.org/10.1016/S1474-4422(18)30295-3
Wang XF, Li S, Chou AP, Bronstein JM. Inhibitory effects of pesticides on proteasome activity: implication in Parkinson's disease. Neurobiol Dis. 2006;23(1):198-205. https://doi.org/10.1016/j.nbd.2006.02.012
McCord CP. TOXICITY OF TRICHLOROETHYLENE. JAMA. 1932;99(5):409. https://doi.org/10.1001/jama.1932.02740570055030
Goutman SA. Diagnosis and Clinical Management of Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders. Continuum (Minneap Minn). 2017;23(5, Peripheral Nerve and Motor Neuron Disorders):1332-1359. https://doi.org/10.1212/CON.0000000000000535
Kiernan MC, Vucic S, Cheah BC, et al. Amyotrophic lateral sclerosis. Lancet. 2011;377(9769):942-955. https://doi.org/10.1016/S0140-6736(10)61156-7
Arthur KC, Calvo A, Price TR, Geiger JT, Chiò A, Traynor BJ. Projected increase in amyotrophic lateral sclerosis from 2015 to 2040. Nat Commun. 2016;7:12408. Published 2016 Aug 11. https://doi.org/10.1038/ncomms12408
Chiò A, Mazzini L, D'Alfonso S, et al. The multistep hypothesis of ALS revisited: The role of genetic mutations. Neurology. 2018;91(7):e635-e642. https://doi.org/10.1212/WNL.0000000000005996
Al-Chalabi A, Hardiman O. The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol. 2013;9(11):617-628. https://doi.org/10.1038/nrneurol.2013.203
Chiò A, Benzi G, Dossena M, Mutani R, Mora G. Severely increased risk of amyotrophic lateral sclerosis among Italian professional football players. Brain. 2005;128(Pt 3):472-476. https://doi.org/10.1093/brain/awh373
Lehman EJ, Hein MJ, Baron SL, Gersic CM. Neurodegenerative causes of death among retired National Football League players. Neurology. 2012;79(19):1970-1974. https://doi.org/10.1212/WNL.0b013e31826daf50
Russell ER, Mackay DF, Lyall D, et al. Neurodegenerative disease risk among former international rugby union players. J Neurol Neurosurg Psychiatry. 2022;93(12):1262-1268. https://doi.org/10.1136/jnnp-2022-329675
Kurtzke JF, Beebe GW. Epidemiology of amyotrophic lateral sclerosis: 1. A case-control comparison based on ALS deaths. Neurology. 1980;30(5):453-462. https://doi.org/10.1212/wnl.30.5.453
Turner MR, Abisgold J, Yeates DG, Talbot K, Goldacre MJ. Head and other physical trauma requiring hospitalisation is not a significant risk factor in the development of ALS. J Neurol Sci. 2010;288(1-2):45-48. https://doi.org/10.1016/j.jns.2009.10.010
Chen H, Richard M, Sandler DP, Umbach DM, Kamel F. Head injury and amyotrophic lateral sclerosis. Am J Epidemiol. 2007;166(7):810-816. https://doi.org/10.1093/aje/kwm153
Armon C, Nelson LM. Is head trauma a risk factor for amyotrophic lateral sclerosis? An evidence based review. Amyotroph Lateral Scler. 2012;13(4):351-356. https://doi.org/10.3109/17482968.2012.660954
Fournier CN, Gearing M, Upadhyayula SR, Klein M, Glass JD. Head injury does not alter disease progression or neuropathologic outcomes in ALS. Neurology. 2015;84(17):1788-1795. https://doi.org/10.1212/WNL.0000000000001522
Wright DK, Liu S, van der Poel C, et al. Traumatic Brain Injury Results in Cellular, Structural and Functional Changes Resembling Motor Neuron Disease. Cereb Cortex. 2017;27(9):4503-4515. https://doi.org/10.1093/cercor/bhw254
Rosenbohm A, Kassubek J, Weydt P, et al. Can lesions to the motor cortex induce amyotrophic lateral sclerosis?. J Neurol. 2014;261(2):283-290. https://doi.org/10.1007/s00415-013-7185-7
Bandres-Ciga S, Noyce AJ, Hemani G, et al. Shared polygenic risk and causal inferences in amyotrophic lateral sclerosis [published correction appears in Ann Neurol. 2020 Jun;87(6):991-992]. Ann Neurol. 2019;85(4):470-481. https://doi.org/10.1002/ana.25431
Zeng P, Zhou X. Causal effects of blood lipids on amyotrophic lateral sclerosis: a Mendelian randomization study. Hum Mol Genet. 2019;28(4):688-697. https://doi.org/10.1093/hmg/ddy384
van Rheenen W, van der Spek RAA, Bakker MK, et al. Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology [published correction appears in Nat Genet. 2022 Mar;54(3):361]. Nat Genet. 2021;53(12):1636-1648. https://doi.org/10.1038/s41588-021-00973-1
Mariosa D, Beard JD, Umbach DM, et al. Body Mass Index and Amyotrophic Lateral Sclerosis: A Study of US Military Veterans. Am J Epidemiol. 2017;185(5):362-371. https://doi.org/10.1093/aje/kww140
Paganoni S, Deng J, Jaffa M, Cudkowicz ME, Wills AM. Body mass index, not dyslipidemia, is an independent predictor of survival in amyotrophic lateral sclerosis. Muscle Nerve. 2011;44(1):20-24. https://doi.org/10.1002/mus.22114
Paganoni S, Hyman T, Shui A, et al. Pre-morbid type 2 diabetes mellitus is not a prognostic factor in amyotrophic lateral sclerosis. Muscle Nerve. 2015;52(3):339-343. https://doi.org/10.1002/mus.24688
Reich-Slotky R, Andrews J, Cheng B, et al. Body mass index (BMI) as predictor of ALSFRS-R score decline in ALS patients. Amyotroph Lateral Scler Frontotemporal Degener. 2013;14(3):212-216. https://doi.org/10.3109/21678421.2013.770028
Traxinger K, Kelly C, Johnson BA, Lyles RH, Glass JD. Prognosis and epidemiology of amyotrophic lateral sclerosis: Analysis of a clinic population, 1997-2011. Neurol Clin Pract. 2013;3(4):313-320. https://doi.org/10.1212/CPJ.0b013e3182a1b8ab
Nakken O, Meyer HE, Stigum H, Holmøy T. High BMI is associated with low ALS risk: A population-based study. Neurology. 2019;93(5):e424-e432. https://doi.org/10.1212/WNL.0000000000007861
Goutman SA, Boss J, Guo K, et al. Untargeted metabolomics yields insight into ALS disease mechanisms. J Neurol Neurosurg Psychiatry. 2020;91(12):1329-1338. https://doi.org/10.1136/jnnp-2020-323611
Park Y, Park J, Kim Y, Baek H, Kim SH. Association between nutritional status and disease severity using the amyotrophic lateral sclerosis (ALS) functional rating scale in ALS patients. Nutrition. 2015;31(11-12):1362-1367. https://doi.org/10.1016/j.nut.2015.05.025
Wills AM, Hubbard J, Macklin EA, et al. Hypercaloric enteral nutrition in patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet. 2014;383(9934):2065-2072. https://doi.org/10.1016/S0140-6736(14)60222-1
https://data.worldobesity.org/rankings/ entered April 2024
Nieves JW, Gennings C, Factor-Litvak P, et al. Association Between Dietary Intake and Function in Amyotrophic Lateral Sclerosis. JAMA Neurol. 2016;73(12):1425-1432. https://doi.org/10.1001/jamaneurol.2016.3401
Nelson LM, Matkin C, Longstreth WT Jr, McGuire V. Population-based case-control study of amyotrophic lateral sclerosis in western Washington State. II. Diet. Am J Epidemiol. 2000;151(2):164-173. https://doi.org/10.1093/oxfordjournals.aje.a010184
Okamoto K, Kihira T, Kondo T, et al. Lifestyle factors and risk of amyotrophic lateral sclerosis: a case-control study in Japan. Ann Epidemiol. 2009;19(6):359-364. https://doi.org/10.1016/j.annepidem.2009.01.015
Pupillo E, Bianchi E, Chiò A, et al. Amyotrophic lateral sclerosis and food intake. Amyotroph Lateral Scler Frontotemporal Degener. 2018;19(3-4):267-274. https://doi.org/10.1080/21678421.2017.1418002
Huisman MH, Seelen M, van Doormaal PT, et al. Effect of Presymptomatic Body Mass Index and Consumption of Fat and Alcohol on Amyotrophic Lateral Sclerosis. JAMA Neurol. 2015;72(10):1155-1162. https://doi.org/10.1001/jamaneurol.2015.1584
Fitzgerald KC, O'Reilly ÉJ, Falcone GJ, et al. Dietary ω-3 polyunsaturated fatty acid intake and risk for amyotrophic lateral sclerosis. JAMA Neurol. 2014;71(9):1102-1110. https://doi.org/10.1001/jamaneurol.2014.1214
Veldink JH, Kalmijn S, Groeneveld GJ, et al. Intake of polyunsaturated fatty acids and vitamin E reduces the risk of developing amyotrophic lateral sclerosis [published correction appears in J Neurol Neurosurg Psychiatry. 2007 Jul;78(7):779]. J Neurol Neurosurg Psychiatry. 2007;78(4):367-371. https://doi.org/10.1136/jnnp.2005.083378
Fergani A, Oudart H, Gonzalez De Aguilar JL, et al. Increased peripheral lipid clearance in an animal model of amyotrophic lateral sclerosis. J Lipid Res. 2007;48(7):1571-1580. https://doi.org/10.1194/jlr.M700017-JLR200
Verburgh K. Nutrigerontology: why we need a new scientific discipline to develop diets and guidelines to reduce the risk of aging-related diseases. Aging Cell. 2015;14(1):17-24. https://doi.org/10.1111/acel.12284
Felmus MT, Patten BM, Swanke L. Antecedent events in amyotrophic lateral sclerosis. Neurology. 1976;26(2):167-172. https://doi.org/10.1212/wnl.26.2.167
Pierce-Ruhland R, Patten BM. Repeat study of antecedent events in motor neuron disease. Ann Clin Res. 1981;13(2):102-107.
Grant WB. Milk and other dietary influences on coronary heart disease. Altern Med Rev. 1998;3(4):281-294.
Hughes KC, Gao X, Kim IY, et al. Intake of dairy foods and risk of Parkinson disease. Neurology. 2017;89(1):46-52. https://doi.org/10.1212/WNL.0000000000004057
D'Ovidio F, Rooney JPK, Visser AE, et al. Association between alcohol exposure and the risk of amyotrophic lateral sclerosis in the Euro-MOTOR study. J Neurol Neurosurg Psychiatry. 2019;90(1):11-19. https://doi.org/10.1136/jnnp-2018-318559
Logroscino G, Traynor BJ, Hardiman O, et al. Incidence of amyotrophic lateral sclerosis in Europe. J Neurol Neurosurg Psychiatry. 2010;81(4):385-390. https://doi.org/10.1136/jnnp.2009.183525
E M, Yu S, Dou J, et al. Association between alcohol consumption and amyotrophic lateral sclerosis: a meta-analysis of five observational studies. Neurol Sci. 2016;37(8):1203-1208. https://doi.org/10.1007/s10072-016-2575-0
de Jong SW, Huisman MH, Sutedja NA, et al. Smoking, alcohol consumption, and the risk of amyotrophic lateral sclerosis: a population-based study. Am J Epidemiol. 2012;176(3):233-239. https://doi.org/10.1093/aje/kws015
Yu X, Wang T, Chen Y, et al. Alcohol Drinking and Amyotrophic Lateral Sclerosis: An Instrumental Variable Causal Inference. Ann Neurol. 2020;88(1):195-198. https://doi.org/10.1002/ana.25721
Ingre C, Roos PM, Piehl F, Kamel F, Fang F. Risk factors for amyotrophic lateral sclerosis. Clin Epidemiol. 2015;7:181-193. Published 2015 Feb 12. https://doi.org/10.2147/CLEP.S37505
Roos PM, Vesterberg O, Syversen T, Flaten TP, Nordberg M. Metal concentrations in cerebrospinal fluid and blood plasma from patients with amyotrophic lateral sclerosis. Biol Trace Elem Res. 2013;151(2):159-170. https://doi.org/10.1007/s12011-012-9547-x
Sutedja NA, Veldink JH, Fischer K, et al. Exposure to chemicals and metals and risk of amyotrophic lateral sclerosis: a systematic review. Amyotroph Lateral Scler. 2009;10(5-6):302-309. https://doi.org/10.3109/17482960802455416
Peters TL, Kamel F, Lundholm C, et al. Occupational exposures and the risk of amyotrophic lateral sclerosis. Occup Environ Med. 2017;74(2):87-92. https://doi.org/10.1136/oemed-2016-103700
Chancellor AM, Slattery JM, Fraser H, Warlow CP. Risk factors for motor neuron disease: a case-control study based on patients from the Scottish Motor Neuron Disease Register. J Neurol Neurosurg Psychiatry. 1993;56(11):1200-1206. https://doi.org/10.1136/jnnp.56.11.1200
Currier RD, Haerer AF. Amyotrophic lateral sclerosis and metallic toxins. Arch Environ Health. 1968;17(5):712-719. https://doi.org/10.1080/00039896.1968.10665310
Chió A, Meineri P, Tribolo A, Schiffer D. Risk factors in motor neuron disease: a case-control study. Neuroepidemiology. 1991;10(4):174-184. https://doi.org/10.1159/000110267
Johnson FO, Atchison WD. The role of environmental mercury, lead and pesticide exposure in development of amyotrophic lateral sclerosis. Neurotoxicology. 2009;30(5):761-765. https://doi.org/10.1016/j.neuro.2009.07.010
Mangelsdorf I, Walach H, Mutter J. Complement Med Res. 2017;24(3):175-181. https://doi.org/10.1159/000477397
Andrew AS, Bradley WG, Peipert D, et al. Risk factors for amyotrophic lateral sclerosis: A regional United States case-control study. Muscle Nerve. 2021;63(1):52-59. https://doi.org/10.1002/mus.27085
Andrew A, Zhou J, Gui J, et al. Airborne lead and polychlorinated biphenyls (PCBs) are associated with amyotrophic lateral sclerosis (ALS) risk in the U.S. Sci Total Environ. 2022;819:153096. https://doi.org/10.1016/j.scitotenv.2022.153096
Mitsumoto H, Garofalo DC, Gilmore M, et al. Case-control study in ALS using the National ALS Registry: lead and agricultural chemicals are potential risk factors. Amyotroph Lateral Scler Frontotemporal Degener. 2022;23(3-4):190-202. https://doi.org/10.1080/21678421.2021.1936556
Wang TW, Wuu J, Cooley A, Yeh TS, Benatar M, Weisskopf M. Occupational lead exposure and survival with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2023;24(1-2):100-107. https://doi.org/10.1080/21678421.2022.2059379
Duan QQ, Jiang Z, Su WM, et al. Risk factors of amyotrophic lateral sclerosis: a global meta-summary. Front Neurosci. 2023;17:1177431. Published 2023 Apr 24. https://doi.org/10.3389/fnins.2023.1177431
García J, Ventura MI, Requena M, Hernández AF, Parrón T, Alarcón R. Association of reproductive disorders and male congenital anomalies with environmental exposure to endocrine active pesticides. Reprod Toxicol. 2017;71:95-100. https://doi.org/10.1016/j.reprotox.2017.04.011
Andrew A, Zhou J, Gui J, et al. Pesticides applied to crops and amyotrophic lateral sclerosis risk in the U.S. Neurotoxicology. 2021;87:128-135. https://doi.org/10.1016/j.neuro.2021.09.004
Beaudin M, Salachas F, Pradat PF, Dupré N. Environmental risk factors for amyotrophic lateral sclerosis: a case-control study in Canada and France. Amyotroph Lateral Scler Frontotemporal Degener. 2022;23(7-8):592-600. https://doi.org/10.1080/21678421.2022.2028167
Zhu Q, Zhou J, Zhang Y, et al. Risk factors associated with amyotrophic lateral sclerosis based on the observational study: a systematic review and meta-analysis. Front Neurosci. 2023;17:1196722. Published 2023 May 22. https://doi.org/10.3389/fnins.2023.1196722
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Julia Kuszneruk, Katarzyna Chawrylak, Magdalena Kłusek, Maria Kubas, Katarzyna Krzemińska
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 88
Number of citations: 0