The Overview of available vitamin and supplement products used to improve immune system function
DOI:
https://doi.org/10.12775/QS.2024.19.53221Keywords
vitamin D3, immunity improvement, zinc, bacterial lysates, lactoferrin, fish oil, omega-3 fatty acids, Echinacea purpurea, Spirulina maxima, curcumin, probiotics, ginseng, antiviral, infectionsAbstract
Introduction:
Questioning how we can boost our immunity during the infectious season often arises in the general practicioner’s office. Patients report issues with recurring infections, affecting not only children but also adults, particularly those in professionally exposed groups such as teachers. Therefore, is it worthwhile to recommend over-the-counter (OTC) products available in pharmacies to patients, aiming to strengthen their immunity? This article discusses the most commonly used supplements and immune-boosting preparations by patients and physicians, along with scientific evidence regarding their effectiveness.
Material and methods: The basis of the work were medical articles collected in the PubMed database. The research was conducted by analyzing key words such as: vitamin D3, immunity improvement, zinc, bacterial lysates, lactoferrin, fish oil, omega-3 fatty acids, Echinacea purpurea, Spirulina maxima, curcumin, probiotics, ginseng.
Results: In the pharmaceutical market, there are many supplements aimed at boosting the immune system. However, most of them lack sufficient scientific evidence regarding their effectiveness. The studies conducted so far are of low quality and limited in number. Further research is necessary to demonstrate the efficacy and safety of immune-boosting supplements.
References
Szaflarska, A. (2023). Pediatria po Dyplomie - Czy znamy odpowiedź na pytanie: jak wspomóc odporność dzi... [online] podyplomie.pl. Available at: https://podyplomie.pl/pediatria/38600 [Accessed 21 Dec. 2023].
Sîrbu, A.C., Sabin, O., Bocșan, I.C., Vesa, Ș.C. and Buzoianu, A.D. (2023). The Effect of Vitamin D Supplementation on the Length of Hospitalisation, Intensive Care Unit Admission, and Mortality in COVID-19—A Systematic Review and Meta-Analysis. Nutrients, [online] 15(15), p.3470. doi:https://doi.org/10.3390/nu15153470.
Wimalawansa, S.J. (2023). Infections and Autoimmunity—The Immune System and Vitamin D: A Systematic Review. Nutrients, [online] 15(17), p.3842. doi:https://doi.org/10.3390/nu15173842.
Rusińska, A., Płudowski, P., Walczak, M., Borszewska-Kornacka, M.K., Bossowski, A., Chlebna-Sokół, D., Czech-Kowalska, J., Dobrzańska, A., Franek, E., Helwich, E., Jackowska, T., Kalina, M.A., Konstantynowicz, J., Książyk, J., Lewiński, A., Łukaszkiewicz, J., Marcinowska-Suchowierska, E., Mazur, A., Michałus, I. and Peregud-Pogorzelski, J. (2018). Vitamin D Supplementation Guidelines for General Population and Groups at Risk of Vitamin D Deficiency in Poland—Recommendations of the Polish Society of Pediatric Endocrinology and Diabetes and the Expert Panel With Participation of National Specialist Consultants and Representatives of Scientific Societies—2018 Update. Frontiers in Endocrinology, [online] 9. doi:https://doi.org/10.3389/fendo.2018.00246.
Jurkiewicz, D. and Zielnik-Jurkiewicz, B. (2018). Bacterial lysates in the prevention of respiratory tract infections. Otolaryngologia Polska, 72(5), pp.1–8. doi:https://doi.org/10.5604/01.3001.0012.7216.
EMA (2019). Bacterial lysates-containing medicinal products indicated for respiratory conditions - referral | European Medicines Agency. [online] www.ema.europa.eu. Available at: https://www.ema.europa.eu/en/medicines/human/referrals/bacterial-lysates-containing-medicinal-products-indicated-respiratory-conditions [Accessed 21 Dec. 2023].
Suárez, N., Ferrara, F., Rial, A., Dee, V. and Chabalgoity, J.A. (2020). Bacterial Lysates as Immunotherapies for Respiratory Infections: Methods of Preparation. Frontiers in Bioengineering and Biotechnology, 8. doi:https://doi.org/10.3389/fbioe.2020.00545.
Sienkiewicz, M., Jaśkiewicz, A., Tarasiuk, A. and Fichna, J. (2021). Lactoferrin: an overview of its main functions, immunomodulatory and antimicrobial role, and clinical significance. Critical Reviews in Food Science and Nutrition, 62(22), pp.6016–6033. doi:https://doi.org/10.1080/10408398.2021.1895063.
Matino, E., Tavella, E., Rizzi, M., Gian Carlo Avanzi, Azzolina, D., Battaglia, A., Paolo Becco, Bellan, M., G. Bertinieri, Massimo Bertoletti, Giuseppe Francesco Casciaro, Luigi Mario Castello, Umberto Colageo, Colangelo, D., Comolli, D., Costanzo, M., Croce, A., Davide D’Onghia, Francesco Della Corte and Luigi De Mitri (2023). Effect of Lactoferrin on Clinical Outcomes of Hospitalized Patients with COVID-19: The LAC Randomized Clinical Trial. Nutrients, [online] 15(5), pp.1285–1285. doi:https://doi.org/10.3390/nu15051285
Ali, A.S., Hasan, S.S., Kow, C.S. and Merchant, H.A. (2021). Lactoferrin reduces the risk of respiratory tract infections: A meta-analysis of randomized controlled trials. Clinical Nutrition ESPEN, 45, pp.26–32. doi:https://doi.org/10.1016/j.clnesp.2021.08.019.
Read, S.A., Obeid, S., Ahlenstiel, C. and Ahlenstiel, G. (2019). The Role of Zinc in Antiviral Immunity. Advances in Nutrition, [online] 10(4), pp.696–710. doi:https://doi.org/10.1093/advances/nmz013.
Sadeghsoltani, F., Mohammadzadeh, I., Safari, M.-M., Hassanpour, P., Izadpanah, M., Qujeq, D., Moein, S. and Vaghari-Tabari, M. (2021). Zinc and Respiratory Viral Infections: Important Trace Element in Anti-viral Response and Immune Regulation. Biological Trace Element Research. doi:https://doi.org/10.1007/s12011-021-02859-z.
Heyland, D.K., Jones, N.E., Cvijanovich, N.Z. and Wong, H.R. (2008). Zinc Supplementation in Critically Ill Patients: A Key Pharmaconutrient? 32(5), pp.509–519. doi:https://doi.org/10.1177/0148607108322402.
Ruel, M.T., Rivera, J.A., Santizo, M.-C. ., Lonnerdal, B. and Brown, K.H. (1997). Impact of Zinc Supplementation on Morbidity From Diarrhea and Respiratory Infections Among Rural Guatemalan Children. PEDIATRICS, 99(6), pp.808–813. doi:https://doi.org/10.1542/peds.99.6.808.
Mayo-Wilson, E., Imdad, A., Junior, J., Dean, S. and Bhutta, Z.A. (2014). Preventive zinc supplementation for children, and the effect of additional iron: a systematic review and meta-analysis. BMJ Open, [online] 4(6), pp.e004647–e004647. doi:https://doi.org/10.1136/bmjopen-2013-004647.
Simopoulos, A.P. (2002). Omega-3 Fatty Acids in Inflammation and Autoimmune Diseases. Journal of the American College of Nutrition, [online] 21(6), pp.495–505. doi:https://doi.org/10.1080/07315724.2002.10719248.
Shakoor, H., Feehan, J., Al Dhaheri, A.S., Ali, H.I., Platat, C., Ismail, L.C., Apostolopoulos, V. and Stojanovska, L. (2021). Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19? Maturitas, [online] 143, pp.1–9. doi:https://doi.org/10.1016/j.maturitas.2020.08.003.
Ghasemi Fard, S., Wang, F., Sinclair, A.J., Elliott, G. and Turchini, G.M. (2018). How does high DHA fish oil affect health? A systematic review of evidence. Critical Reviews in Food Science and Nutrition, 59(11), pp.1684–1727. doi:https://doi.org/10.1080/10408398.2018.1425978.
Yang, C.-P., Chang, C.-M., Yang, C.-C., Pariante, C.M. and Su, K.-P. (2022). Long COVID and long chain fatty acids (LCFAs): Psychoneuroimmunity implication of omega-3 LCFAs in delayed consequences of COVID-19. Brain, Behavior, and Immunity, 103, pp.19–27. doi:https://doi.org/10.1016/j.bbi.2022.04.001.
D’Auria, E., Miraglia Del Giudice, M., Barberi, S., Mandelli, M., Verduci, E., Leonardi, S., Riva, E. and Giovannini, M. (2014). Omega-3 fatty acids and asthma in children. Allergy and Asthma Proceedings, 35(3), pp.233–240. doi:https://doi.org/10.2500/aap.2014.35.3736.
Saedisomeolia, A., Wood, L.G., Garg, M.L., Gibson, P.G. and Wark, P.A.B. (2008). Anti-inflammatory effects of long-chain n-3 PUFA in rhinovirus-infected cultured airway epithelial cells. British Journal of Nutrition, [online] 101(4), pp.533–540. doi:https://doi.org/10.1017/S0007114508025798.
M F Nagoor Meeran 1, Javed H, Sharma C, Can Echinacea be a potential candidate to target immunity, inflammation, and infection - The trinity of coronavirus disease 2019, Heliyon. 2021 Feb;7(2):e05990.doi: 10.1016/j.heliyon.2021.e05990. Epub 2021 Feb 8.
C. Cingii , N. Bayar Muluk, A. Tezol, Efficacy of traditional herbal formulas on human immunity, Eur Rev Med Pharmacol Sci. 2023 Jun;27(4 Suppl):27-40.
Crawford C, Brown L, Costello R, Select Dietary Supplement Ingredients for Preserving and Protecting the Immune System in Healthy Individuals: A Systematic Review, Nutrients. 2022 Nov 1;14(21):4604. doi: 10.3390/nu14214604.
Afsari, Forough, et al. “An Overview of Pharmacological and Clinical Aspects of Spirulina.” Current Drug Discovery Technologies, vol. 20, no. 2, Mar. 2023, https://doi.org/10.2174/1570163820666221129141217. Accessed 11 May 2023.
Kulshreshtha, Archana, et al. “Spirulina in Health Care Management.” Current Pharmaceutical Biotechnology, vol. 9, no. 5, 1 Oct. 2008, pp. 400–405, www.medicinabiomolecular.com.br/biblioteca/pdfs/Nutrientes/nu-0187.pdf, https://doi.org/10.2174/138920108785915111. Accessed 29 Apr. 2021.
Chen, Wei, et al. “Effect of Hot Water Extracts of Arthrospira Maxima (Spirulina) against Respiratory Syncytial Virus.” Phytomedicine, vol. 110, 1 Feb. 2023, pp. 154611–154611, https://doi.org/10.1016/j.phymed.2022.154611. Accessed 7 Jan. 2024
Sadeghi, Mahvash, et al. “Curcumin and Chemokines: Mechanism of Action and Therapeutic Potential in Inflammatory Diseases.” Inflammopharmacology, vol. 31, no. 3, 30 Mar. 2023, pp. 1069–1093, https://doi.org/10.1007/s10787-023-01136-w. Accessed 7 Nov. 2023.
Jennings, Morgan R., and Robin J. Parks. “Curcumin as an Antiviral Agent.” Viruses, vol. 12, no. 11, 31 Oct. 2020, p. 1242, https://doi.org/10.3390/v12111242.
Mazziotta, Chiara, et al. “Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health.” Cells, vol. 12, no. 1, 2 Jan. 2023, p. 184, https://doi.org/10.3390/cells12010184. Accessed 5 Jan. 2023.
Zhao, Yunli, et al. “Probiotics for Preventing Acute Upper Respiratory Tract Infections.” Cochrane Database of Systematic Reviews, vol. 2022, no. 8, 24 Aug. 2022, https://doi.org/10.1002/14651858.cd006895.pub4. Accessed 28 Aug. 2022.
Osamu Kanauchi, Zhao Xuan Low, Kenta Jounai; Overview of anti-viral effects of probiotics via immune cells in pre-, mid- and post-SARS-CoV2 era; Front Immunol. 2023 Dec 5:14:1280680.doi: 10.3389/fimmu.2023.1280680. eCollection 2023.
Chang-Xiao, Liu, and Xiao Pei-Gen. “Recent Advances on Ginseng Research in China.” Journal of Ethnopharmacology, vol. 36, no. 1, Feb. 1992, pp. 27–38, https://doi.org/10.1016/0378-8741(92)90057-x. Accessed 1 June 2020.
Ratan, Zubair Ahmed, et al. “Adaptogenic Effects of Panax Ginseng on Modulation of Immune Functions.” Journal of Ginseng Research, vol. 45, no. 1, Jan. 2021, pp. 32–40, https://doi.org/10.1016/j.jgr.2020.09.004. Accessed 21 Dec. 2021.
Iqbal, Hamid, and Dong-kwon Rhee. “Ginseng Alleviates Microbial Infections of the Respiratory Tract: A Review.” Journal of Ginseng Research, vol. 44, no. 2, Mar. 2020, pp. 194–204, https://doi.org/10.1016/j.jgr.2019.12.001.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Marlena Cąkała, Aleksandra Zajkowska, Magdalena Kozioł, Kamila Podgórniak, Karolina Błaszczak, Joanna Skotnicka, Maria Witkowska

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 155
Number of citations: 0