Revolutionizing Cardiovascular Treatments with the Use of AI: Current Status and Future Prospects
DOI:
https://doi.org/10.12775/QS.2024.19.53072Keywords
Artificial Intelligence, AI, Cardiovascular Diseases Treatment, Cardiovascular Diseases DiagnosisAbstract
Introduction: Artificial Intelligence (AI) has emerged as a seminal force in healthcare, fundamentally transforming various aspects of medical practice and patient care. This review explores the transformative impact of AI on the treatment of cardiovascular diseases (CVDs).
State of Knowledge: AI has revolutionized diagnostic accuracy, treatment precision, and patient management in the realm of cardiovascular care. It enhances diagnostic processes, enabling the early detection of CVDs through advanced imaging analysis and interpretation. Additionally, AI facilitates precision in risk stratification, identifying high-risk patient cohorts with heightened accuracy and informing personalized treatment strategies. Furthermore, AI optimizes drug selection and dosage regimens through pharmacogenomics, maximizing therapeutic efficacy while minimizing adverse drug reactions. Moreover, AI improves precision and safety during interventional procedures, guiding clinicians in real-time decision-making and enhancing procedural outcomes.
Conclusions: AI is poised to revolutionize cardiovascular care, fostering innovation and improving patient outcomes.
References
Raghunath A, Nguyen DD, Schram M, Albert D, Gollakota S, Shapiro L, et al. Artificial intelligence-enabled mobile electrocardiograms for event prediction in paroxysmal atrial fibrillation. Cardiovasc Digit Health J. 2023 Feb;4(1):21–8.
Guo Y, Xia C, Zhong Y, Wei Y, Zhu H, Ma J, et al. Machine learning-enhanced echocardiography for screening coronary artery disease. Biomed Eng Online. 2023 May 11;22:44.
Lanzafame LRM, Bucolo GM, Muscogiuri G, Sironi S, Gaeta M, Ascenti G, et al. Artificial Intelligence in Cardiovascular CT and MR Imaging. Life (Basel). 2023 Feb 11;13(2):507.
Fotaki A, Puyol-Antón E, Chiribiri A, Botnar R, Pushparajah K, Prieto C. Artificial Intelligence in Cardiac MRI: Is Clinical Adoption Forthcoming? Front Cardiovasc Med [Internet]. 2022 Jan 10 [cited 2024 May 8];8. Available from: https://www.frontiersin.org/articles/10.3389/fcvm.2021.818765
Lim LJ, Tison GH, Delling FN. Artificial Intelligence in Cardiovascular Imaging. Methodist Debakey Cardiovasc J. 2020;16(2):138–45.
Alowais SA, Alghamdi SS, Alsuhebany N, Alqahtani T, Alshaya AI, Almohareb SN, et al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Medical Education. 2023 Sep 22;23(1):689.
Kakadiaris IA, Vrigkas M, Yen AA, Kuznetsova T, Budoff M, Naghavi M. Machine Learning Outperforms ACC / AHA CVD Risk Calculator in MESA. J Am Heart Assoc. 2018 Nov 20;7(22):e009476.
Lin A, Kolossváry M, Motwani M, Išgum I, Maurovich-Horvat P, Slomka PJ, et al. Artificial Intelligence in Cardiovascular Imaging for Risk Stratification in Coronary Artery Disease. Radiol Cardiothorac Imaging. 2021 Feb 25;3(1):e200512.
Yuan D, Wang P, Jia S, Zhang C, Zhu P, Jiang L, et al. Lipoprotein(a), high-sensitivity C-reactive protein, and cardiovascular risk in patients undergoing percutaneous coronary intervention. Atherosclerosis. 2022 Dec 1;363:109–16.
Zhao M, Ma J, Li M, Zhang Y, Jiang B, Zhao X, et al. Cytochrome P450 Enzymes and Drug Metabolism in Humans. Int J Mol Sci. 2021 Nov 26;22(23):12808.
Liu TY, Hsu HY, You YS, Hsieh YW, Lin TC, Peng CW, et al. Efficacy of Warfarin Therapy Guided by Pharmacogenetics: A Real-world Investigation Among Han Taiwanese. Clin Ther. 2023 Jul;45(7):662–70.
Castaño-Amores C, Antúnez-Rodríguez A, Pozo-Agundo A, García-Rodríguez S, Martínez-González LJ, Dávila-Fajardo CL. Genetic polymorphisms in ADRB1, ADRB2 and CYP2D6 genes and response to beta-blockers in patients with acute coronary syndrome. Biomedicine & Pharmacotherapy. 2023 Dec 31;169:115869.
Ploscaru V, Popa-Fotea NM, Calmac L, Itu LM, Mihai C, Bataila V, et al. Artificial intelligence and cloud based platform for fully automated PCI guidance from coronary angiography-study protocol. PLoS One. 2022;17(9):e0274296.
Benjamin MM, Rabbat MG. Artificial Intelligence in Transcatheter Aortic Valve Replacement: Its Current Role and Ongoing Challenges. Diagnostics. 2024 Jan;14(3):261.
Lin MC, Tseng VS, Lin CS, Chiu SW, Pan LK, Pan LF. Quantitative Prediction of SYNTAX Score for Cardiovascular Artery Disease Patients via the Inverse Problem Algorithm Technique as Artificial Intelligence Assessment in Diagnostics. Diagnostics (Basel). 2022 Dec 15;12(12):3180.
Beaman C, Saber H, Tateshima S. A technical guide to robotic catheter angiography with the Corindus CorPath GRX system. J Neurointerv Surg. 2022 Dec;14(12):1284.
Zorinas A, Zakarkaitė D, Janušauskas V, Austys D, Puodžiukaitė L, Zuozienė G, et al. Technical Recommendations for Real-Time Echocardiography and Fluoroscopy Imaging Fusion in Catheter-Based Mitral Valve Paravalvular Leak and Other Procedures. J Clin Med. 2022 Feb 28;11(5):1328.
Ko HYK, Tripathi NK, Mozumder C, Muengtaweepongsa S, Pal I. Real-Time Remote Patient Monitoring and Alarming System for Noncommunicable Lifestyle Diseases. Int J Telemed Appl. 2023 Nov 20;2023:9965226.
Merschel S, Reinhardt L. Analyzability of Photoplethysmographic Smartwatch Data by the Preventicus Heartbeats Algorithm During Everyday Life: Feasibility Study. JMIR Form Res. 2022 Mar 28;6(3):e29479.
Health Quality Ontario. Remote Monitoring of Implantable Cardioverter-Defibrillators, Cardiac Resynchronization Therapy and Permanent Pacemakers: A Health Technology Assessment. Ont Health Technol Assess Ser. 2018;18(7):1–199.
Molinari G, Molinari M, Di Biase M, Brunetti ND. Telecardiology and its settings of application: An update. J Telemed Telecare. 2018 Jun;24(5):373–81.
Thamman R, Janardhanan R. Cardiac rehabilitation using telemedicine: the need for tele cardiac rehabilitation. Rev Cardiovasc Med. 2020 Dec 30;21(4):497–500.
Kennel PJ, Rosenblum H, Axsom KM, Alishetti S, Brener M, Horn E, et al. Remote Cardiac Monitoring in Patients With Heart Failure: A Review. JAMA Cardiol. 2022 May 1;7(5):556–64.
Lee KCS, Breznen B, Ukhova A, Koehler F, Martin SS. Virtual healthcare solutions for cardiac rehabilitation: a literature review. Eur Heart J Digit Health. 2023 Feb 9;4(2):99–111.
Alkhodari M, Fraiwan L. Convolutional and recurrent neural networks for the detection of valvular heart diseases in phonocardiogram recordings. Comput Methods Programs Biomed. 2021 Mar;200:105940.
Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, et al. Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? IEEE Trans Med Imaging. 2016 May;35(5):1299–312.
El-Taraboulsi J, Cabrera CP, Roney C, Aung N. Deep neural network architectures for cardiac image segmentation. Artificial Intelligence in the Life Sciences. 2023 Dec 15;4:100083.
Nandi P, Rao M. A Novel CNN-LSTM Model Based Non-Invasive Cuff-Less Blood Pressure Estimation System. Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:832–6.
Hossain E, Rana R, Higgins N, Soar J, Barua PD, Pisani AR, et al. Natural Language Processing in Electronic Health Records in relation to healthcare decision-making: A systematic review. Comput Biol Med. 2023 Mar;155:106649.
Angraal S, Krumholz HM, Schulz WL. Blockchain Technology: Applications in Health Care. Circ Cardiovasc Qual Outcomes. 2017 Sep;10(9):e003800.
Krittanawong C, Johnson KW, Choi E, Kaplin S, Venner E, Murugan M, et al. Artificial Intelligence and Cardiovascular Genetics. Life (Basel). 2022 Feb 14;12(2):279.
Huang JD, Wang J, Ramsey E, Leavey G, Chico TJA, Condell J. Applying Artificial Intelligence to Wearable Sensor Data to Diagnose and Predict Cardiovascular Disease: A Review. Sensors (Basel). 2022 Oct 20;22(20):8002.
Li K, Cardoso C, Moctezuma-Ramirez A, Elgalad A, Perin E. Heart Rate Variability Measurement through a Smart Wearable Device: Another Breakthrough for Personal Health Monitoring? Int J Environ Res Public Health. 2023 Dec 6;20(24):7146.
Beyar R, Davies J, Cook C, Dudek D, Cummins P, Bruining N. Robotics, imaging, and artificial intelligence in the catheterisation laboratory. EuroIntervention. 2021 Sep 20;17(7):537–49.
Chandramohan N, Hinton J, O’Kane P, Johnson TW. Artificial Intelligence for the Interventional Cardiologist: Powering and Enabling OCT Image Interpretation. Interv Cardiol. 2024 Mar 11;19:e03.
Di Biase L, Zou F, Lin AN, Grupposo V, Marazzato J, Tarantino N, et al. Feasibility of three-dimensional artificial intelligence algorithm integration with intracardiac echocardiography for left atrial imaging during atrial fibrillation catheter ablation. Europace. 2023 Aug 2;25(9):euad211.
Daye D, Wiggins WF, Lungren MP, Alkasab T, Kottler N, Allen B, et al. Implementation of Clinical Artificial Intelligence in Radiology: Who Decides and How? Radiology. 2022 Aug 2;305(3):555–63.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Katarzyna Szymańska, Katarzyna Szmyt, Julia Krasnoborska, Sylwia Samojedny, Maciej Superson, Kamil Walczak, Klaudia Wilk-Trytko, Julia Zarębska, Tomasz Andrzej Duplaga

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 206
Number of citations: 0