From Genes to Gym: The Impact of Physical Exercise on Arrhythmogenic Right Ventricular Cardiomyopathy
DOI:
https://doi.org/10.12775/QS.2024.17.52984Keywords
Arrhythmogenic right ventricular cardiomyopathy, ARVC in athletes, Sudden cardiac death, Impact of physical exercise on ARVCAbstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a hereditary heart muscle disorder characterized by the progressive replacement of right ventricular myocardium with fibrofatty tissue. This condition predisposes individuals to arrhythmias and an elevated risk of sudden cardiac death (SCD). The etiology of ARVC is predominantly genetic, with mutations in genes encoding desmosomal proteins playing a crucial role. Physical exercise has a significant impact on the progression of ARVC, often exacerbating the disease's severity and increasing the likelihood of life-threatening arrhythmic events. Diagnosing ARVC remains challenging due to its variable clinical presentation and overlapping features with other cardiomyopathies. Advanced imaging techniques, electrocardiography, and genetic testing are essential tools in the diagnostic process. Treatment strategies for ARVC include lifestyle modifications, pharmacotherapy, implantable cardioverter-defibrillators (ICDs), and in some cases, catheter ablation or heart transplantation. Preventing disease progression and SCD involves a multidisciplinary approach, emphasizing early diagnosis, risk stratification, and tailored therapeutic interventions. This review comprehensively examines the etiology of ARVC, the detrimental effects of physical exercise on the disease, the associated SCD risk, and the challenges in diagnosis, while also discussing current treatment modalities and preventive measures to mitigate disease progression.
Materials and Methods
Review and summary of research studies available in databases on Google Scholar and PubMed. Databases such as PubMed and Google Scholar were searched using the keywords: ‘Arrhythmogenic right ventricular cardiomyopathy, ‘ARVC in athletes’, ‘Sudden cardiac death’, ‘impact of physical exercise on ARVC’.
References
Dalal D, Nasir K, Bomma C, et al. Arrhythmogenic right ventricular dysplasia: a United States experience. Circulation. 2005;112(25):3823-3832. doi:10.1161/CIRCULATIONAHA.105.542266
Orgeron GM, Calkins H. Advances in the Diagnosis and Management of Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy. Curr Cardiol Rep. 2016;18(6):53. doi:10.1007/s11886-016-0732-y
Coelho SA, Silva F, Silva J, António N. Athletic Training and Arrhythmogenic Right Ventricular Cardiomyopathy. Int J Sports Med. 2019;40(5):295-304. doi:10.1055/a-0750-5848
Prior D, La Gerche A. Exercise and Arrhythmogenic Right Ventricular Cardiomyopathy. Heart Lung Circ. 2020;29(4):547-555. doi:10.1016/j.hlc.2019.12.007
Francés RJ. Arrhythmogenic right ventricular dysplasia/cardiomyopathy. A review and update. Int J Cardiol. 2006;110(3):279-287. doi:10.1016/j.ijcard.2005.07.004
Gandjbakhch E, Redheuil A, Pousset F, Charron P, Frank R. Clinical Diagnosis, Imaging, and Genetics of Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia: JACC State-of-the-Art Review. J Am Coll Cardiol. 2018;72(7):784-804. doi:10.1016/j.jacc.2018.05.065
Murray B. Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C): a review of molecular and clinical literature. J Genet Couns. 2012;21(4):494-504. doi:10.1007/s10897-012-9497-7
Zorzi A, Cipriani A, Bariani R, Pilichou K, Corrado D, Bauce B. Role of Exercise as a Modulating Factor in Arrhythmogenic Cardiomyopathy. Curr Cardiol Rep. 2021 May 7;23(6):57. doi: 10.1007/s11886-021-01489-0. PMID: 33961139; PMCID: PMC8105216.
James CA, Bhonsale A, Tichnell C, et al. Exercise increases age-related penetrance and arrhythmic risk in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated desmosomal mutation carriers. J Am Coll Cardiol. 2013;62(14):1290-1297. doi:10.1016/j.jacc.2013.06.033
Ackerman MJ, Priori SG, Willems S, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm. 2011;8(8):1308-1339. doi:10.1016/j.hrthm.2011.05.020
Fressart V, Duthoit G, Donal E, et al. Desmosomal gene analysis in arrhythmogenic right ventricular dysplasia/cardiomyopathy: spectrum of mutations and clinical impact in practice. Europace. 2010;12(6):861-868. doi:10.1093/europace/euq104
Cox MG, van der Zwaag PA, van der Werf C, et al. Arrhythmogenic right ventricular dysplasia/cardiomyopathy: pathogenic desmosome mutations in index-patients predict outcome of family screening: Dutch arrhythmogenic right ventricular dysplasia/cardiomyopathy genotype-phenotype follow-up study. Circulation. 2011;123(23):2690-2700. doi:10.1161/CIRCULATIONAHA.110.988287
Rigato I, Bauce B, Rampazzo A, et al. Compound and digenic heterozygosity predicts lifetime arrhythmic outcome and sudden cardiac death in desmosomal gene-related arrhythmogenic right ventricular cardiomyopathy. Circ Cardiovasc Genet. 2013;6(6):533-542. doi:10.1161/CIRCGENETICS.113.000288
Bhonsale A, Groeneweg JA, James CA, et al. Impact of genotype on clinical course in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated mutation carriers. Eur Heart J. 2015;36(14):847-855. doi:10.1093/eurheartj/ehu509
Sawant AC, Bhonsale A, te Riele AS, et al. Exercise has a disproportionate role in the pathogenesis of arrhythmogenic right ventricular dysplasia/cardiomyopathy in patients without desmosomal mutations. J Am Heart Assoc. 2014;3(6):e001471. doi:10.1161/JAHA.114.001471
Kindermann W, Corrado D, Scharhag J. The right heart in athletes. Do we really have sufficient evidence for exercise-induced arrhythmogenic right ventricular cardiomyopathy?. Herzschrittmacherther Elektrophysiol. 2012;23(2):144-146. doi:10.1007/s00399-012-0207-9
Marcus FI, McKenna WJ, Sherrill D, Basso C, Bauce B, Bluemke DA, Calkins H, Corrado D, Cox MG, Daubert JP, Fontaine G, Gear K, Hauer R, Nava A, Picard MH, Protonotarios N, Saffitz JE, Sanborn DM, Steinberg JS, Tandri H, Thiene G, Towbin JA, Tsatsopoulou A, Wichter T, Zareba W. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation. 2010 Apr 6;121(13):1533-41. doi: 10.1161/CIRCULATIONAHA.108.840827. Epub 2010 Feb 19. PMID: 20172911; PMCID: PMC2860804.
Kirchhof P, Fabritz L, Zwiener M, et al. Age- and training-dependent development of arrhythmogenic right ventricular cardiomyopathy in heterozygous plakoglobin-deficient mice. Circulation. 2006;114(17):1799-1806. doi:10.1161/CIRCULATIONAHA.106.624502
Delmar M, McKenna WJ. The cardiac desmosome and arrhythmogenic cardiomyopathies: from gene to disease. Circ Res. 2010;107(6):700-714. doi:10.1161/CIRCRESAHA.110.223412
Heuser A, Plovie ER, Ellinor PT, Grossmann KS, Shin JT, Wichter T, Basson CT, Lerman BB, Sasse-Klaassen S, Thierfelder L, MacRae CA, Gerull B. Mutant desmocollin-2 causes arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet. 2006 Dec;79(6):1081-8. doi: 10.1086/509044. Epub 2006 Oct 3. PMID: 17186466; PMCID: PMC1698714.
Brosnan MJ, te Riele ASJM, Bosman LP, Hoorntje ET, van den Berg MP, Hauer RNW et al. Electrocardiographic Features Differentiating Arrhythmogenic Right Ventricular Cardiomyopathy From an Athlete's Heart. JACC: Clinical Electrophysiology. 2018 Dec 1;4(12):1613-1625. doi: 10.1016/j.jacep.2018.09.008
Platonov PG, Calkins H, Hauer RN, et al. High interobserver variability in the assessment of epsilon waves: Implications for diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia. Heart Rhythm. 2016;13(1):208-216. doi:10.1016/j.hrthm.2015.08.031
D'Andrea A, La Gerche A, Golia E, et al. Right heart structural and functional remodeling in athletes. Echocardiography. 2015;32 Suppl 1:S11-S22. doi:10.1111/echo.12226
D'Ascenzi F, Pisicchio C, Caselli S, Di Paolo FM, Spataro A, Pelliccia A. RV Remodeling in Olympic Athletes. JACC Cardiovasc Imaging. 2017;10(4):385-393. doi:10.1016/j.jcmg.2016.03.017
Bauce B, Frigo G, Benini G, et al. Differences and similarities between arrhythmogenic right ventricular cardiomyopathy and athlete's heart adaptations. Br J Sports Med. 2010;44(2):148-154. doi:10.1136/bjsm.2007.042853
Zaidi A, Sheikh N, Jongman JK, et al. Clinical Differentiation Between Physiological Remodeling and Arrhythmogenic Right Ventricular Cardiomyopathy in Athletes With Marked Electrocardiographic Repolarization Anomalies. J Am Coll Cardiol. 2015;65(25):2702-2711. doi:10.1016/j.jacc.2015.04.035
Luijkx T, Velthuis BK, Prakken NH, et al. Impact of revised Task Force Criteria: distinguishing the athlete's heart from ARVC/D using cardiac magnetic resonance imaging. Eur J Prev Cardiol. 2012;19(4):885-891. doi:10.1177/1741826711414215
Etoom Y, Govindapillai S, Hamilton R, et al. Importance of CMR within the Task Force Criteria for the diagnosis of ARVC in children and adolescents. J Am Coll Cardiol. 2015;65(10):987-995. doi:10.1016/j.jacc.2014.12.041
Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice [published correction appears in Eur Heart J. 2022 Nov 7;43(42):4468. doi: 10.1093/eurheartj/ehac458]. Eur Heart J. 2021;42(34):3227-3337. doi:10.1093/eurheartj/ehab484
Dello Russo A, Pieroni M, Santangeli P, et al. Concealed cardiomyopathies in competitive athletes with ventricular arrhythmias and an apparently normal heart: role of cardiac electroanatomical mapping and biopsy. Heart Rhythm. 2011;8(12):1915-1922. doi:10.1016/j.hrthm.2011.07.021
Narducci ML, Pelargonio G, La Rosa G, et al. Role of extensive diagnostic workup in young athletes and nonathletes with complex ventricular arrhythmias. Heart Rhythm. 2020;17(2):230-237. doi:10.1016/j.hrthm.2019.08.022
Haykowsky MJ, Samuel TJ, Nelson MD, La Gerche A. Athlete's Heart: Is the Morganroth Hypothesis Obsolete?. Heart Lung Circ. 2018;27(9):1037-1041. doi:10.1016/j.hlc.2018.04.289
Lie ØH, Dejgaard LA, Saberniak J, et al. Harmful Effects of Exercise Intensity and Exercise Duration in Patients With Arrhythmogenic Cardiomyopathy. JACC Clin Electrophysiol. 2018;4(6):744-753. doi:10.1016/j.jacep.2018.01.010
Saberniak J, Hasselberg NE, Borgquist R, et al. Vigorous physical activity impairs myocardial function in patients with arrhythmogenic right ventricular cardiomyopathy and in mutation positive family members. Eur J Heart Fail. 2014;16(12):1337-1344. doi:10.1002/ejhf.181
Ruwald AC, Marcus F, Estes NA 3rd, et al. Association of competitive and recreational sport participation with cardiac events in patients with arrhythmogenic right ventricular cardiomyopathy: results from the North American multidisciplinary study of arrhythmogenic right ventricular cardiomyopathy. Eur Heart J. 2015;36(27):1735-1743. doi:10.1093/eurheartj/ehv110
Corrado D, Basso C, Rizzoli G, Schiavon M, Thiene G. Does sports activity enhance the risk of sudden death in adolescents and young adults?. J Am Coll Cardiol. 2003;42(11):1959-1963. doi:10.1016/j.jacc.2003.03.002
Kaddoura R, Al-Tamimi H. Physical Exercise and Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia: An Overview. Heart Views. 2022;23(4):215-220. doi:10.4103/heartviews.heartviews_70_22
Pelliccia A, Solberg EE, Papadakis M, et al. Recommendations for participation in competitive and leisure time sport in athletes with cardiomyopathies, myocarditis, and pericarditis: position statement of the Sport Cardiology Section of the European Association of Preventive Cardiology (EAPC). Eur Heart J. 2019;40(1):19-33. doi:10.1093/eurheartj/ehy730
Pelliccia A, Sharma S, Gati S, et al. 2020 ESC Guidelines on Sports Cardiology and Exercise in Patients with Cardiovascular Disease. Rev Esp Cardiol (Engl Ed). 2021;74(6):545. doi:10.1016/j.rec.2021.05.003
Wang W, Tichnell C, Murray BA, et al. Exercise restriction is protective for genotype-positive family members of arrhythmogenic right ventricular cardiomyopathy patients. Europace. 2020;22(8):1270-1278. doi:10.1093/europace/euaa105
Krahn AD, Wilde AAM, Calkins H, et al. Arrhythmogenic Right Ventricular Cardiomyopathy. JACC Clin Electrophysiol. 2022;8(4):533-553. doi:10.1016/j.jacep.2021.12.002
Ermakov S, Gerstenfeld EP, Svetlichnaya Y, Scheinman MM. Use of flecainide in combination antiarrhythmic therapy in patients with arrhythmogenic right ventricular cardiomyopathy. Heart Rhythm. 2017;14(4):564-569. doi:10.1016/j.hrthm.2016.12.010
Wichter T, Borggrefe M, Haverkamp W, Chen X, Breithardt G. Efficacy of antiarrhythmic drugs in patients with arrhythmogenic right ventricular disease. Results in patients with inducible and noninducible ventricular tachycardia. Circulation. 1992;86(1):29-37. doi:10.1161/01.cir.86.1.29
Marcus GM, Glidden DV, Polonsky B, et al. Efficacy of antiarrhythmic drugs in arrhythmogenic right ventricular cardiomyopathy: a report from the North American ARVC Registry. J Am Coll Cardiol. 2009;54(7):609-615. doi:10.1016/j.jacc.2009.04.052
Daimee UA, Assis FR, Murray B, et al. Clinical outcomes of catheter ablation of ventricular tachycardia in patients with arrhythmogenic right ventricular cardiomyopathy: Insights from the Johns Hopkins ARVC Program. Heart Rhythm. 2021;18(8):1369-1376. doi:10.1016/j.hrthm.2021.04.028
Giuliano K, Scheel P 3rd, Etchill E, et al. Heart transplantation outcomes in arrhythmogenic right ventricular cardiomyopathy: a contemporary national analysis. ESC Heart Fail. 2022;9(2):988-997. doi:10.1002/ehf2.13687
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Adam Kucharski, Konrad Pilarski, Rafał Makuch, Alicja Chrościcka , Kamil Gała, Andrzej Czajka, Paweł Lenard, Sara Michalska, Martyna Dewicka, Alicja Maria Wawrzyniak

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 123
Number of citations: 0