Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Quality in Sport

Is blue light solely detrimental for human eyes? A concise overview of the current knowledge on how blue light affects eye health.
  • Home
  • /
  • Is blue light solely detrimental for human eyes? A concise overview of the current knowledge on how blue light affects eye health.
  1. Home /
  2. Archives /
  3. Vol. 21 (2024) /
  4. Medical Sciences

Is blue light solely detrimental for human eyes?

A concise overview of the current knowledge on how blue light affects eye health.

Authors

  • Emilia Żurowska Franciszek Raszeja Memorial Municipal Hospital in Poznań, Mickiewicza 2 street, 60-834 Poznań https://orcid.org/0009-0006-5952-1064
  • Urszula Guderska University Clinical Hospital in Poznan https://orcid.org/0009-0000-9287-6672
  • Karolina Krawiel Provincial Hospital in Poznan https://orcid.org/0009-0000-5767-7504
  • Marek Król University Clinical Hospital in Poznan https://orcid.org/0009-0004-0127-4713
  • Jacek Kurzeja Poznan University of Medical Sciences https://orcid.org/0009-0004-4075-7208
  • Iga Markowska Provincial Hospital in Poznan https://orcid.org/0009-0005-5118-2144
  • Hubert Piotrowicz Poznan University of Medical Sciences https://orcid.org/0009-0008-2453-3561
  • Katarzyna Piotrowicz Poznan University of Medical Sciences https://orcid.org/0009-0009-3888-3885

DOI:

https://doi.org/10.12775/QS.2024.21.52981

Keywords

blue-blocking lenses, blue light, light-emitting diodes, ocular growth, oxidative stress, phototoxicity

Abstract

It has long been assumed that blue light is solely detrimental to the eyes and that it is a serious risk factor for a number of ocular diseases. In order to gain a more nuanced comprehension of the impact of blue light on the eye and to ascertain whether there are any beneficial aspects to this influence, this article presents a synthesis of the relevant research and offers updates on the current understanding of the subject matter. The review encompasses the environmental and societal changes that result in increased light exposure, the working principle and reasons for the prevalence of light-emitting diodes, and the safety classification of artificial light sources. Subsequently, we present the impact of blue light on ocular growth and the known mechanisms by which blue light affects different areas of the eye, including the cornea, conjunctiva, lens and retina. Finally, we discuss the validity of blue-blocking lenses and review other recommended strategies aimed at minimising the negative effects of blue light exposure.

References

Hölker F, Bolliger J, Davies TW, et al. 11 Pressing Research Questions on How Light Pollution Affects Biodiversity. Front Ecol Evol. 2021;9:767177. doi:10.3389/fevo.2021.767177

Hölker F, Jechow A, Schroer S, Tockner K, Gessner MO. Light pollution of freshwater ecosystems: principles, ecological impacts and remedies. Philos Trans R Soc B Biol Sci. 2023;378(1892):20220360. doi:10.1098/rstb.2022.0360

Wang L, Yu X, Zhang D, et al. Long-term blue light exposure impairs mitochondrial dynamics in the retina in light-induced retinal degeneration in vivo and in vitro. J Photochem Photobiol B. 2023;240:112654. doi:10.1016/j.jphotobiol.2023.112654

Wong NA, Bahmani H. A review of the current state of research on artificial blue light safety as it applies to digital devices. Heliyon. 2022;8(8):e10282. doi:10.1016/j.heliyon.2022.e10282

Light-Emitting Diodes (LEDS): Implications for Safety. Health Phys. 2020;118(5):549-561. doi:10.1097/HP.0000000000001259

Trott M, Driscoll R, Iraldo E, Pardhan S. Changes and correlates of screen time in adults and children during the COVID-19 pandemic: A systematic review and meta-analysis. eClinicalMedicine. 2022;48:101452. doi:10.1016/j.eclinm.2022.101452

Hedderson MM, Bekelman TA, Li M, et al. Trends in Screen Time Use Among Children During the COVID-19 Pandemic, July 2019 Through August 2021. JAMA Netw Open. 2023;6(2):e2256157. doi:10.1001/jamanetworkopen.2022.56157

Cougnard-Gregoire A, Merle BMJ, Aslam T, et al. Blue Light Exposure: Ocular Hazards and Prevention-A Narrative Review. Ophthalmol Ther. 2023;12(2):755-788. doi:10.1007/s40123-023-00675-3

Lawrenson JG, Hull CC, Downie LE. The effect of blue‐light blocking spectacle lenses on visual performance, macular health and the sleep‐wake cycle: a systematic review of the literature. Ophthalmic Physiol Opt. 2017;37(6):644-654. doi:10.1111/opo.12406

Dain SJ. The blue light dose from white light emitting diodes (LEDs) and other white light sources. Ophthalmic Physiol Opt. 2020;40(5):692-699. doi:10.1111/opo.12713

Jin M, Li X, Yan F, Chen W, Jiang L, Zhang X. The effects of low-color-temperature dual-primary-color light-emitting diodes on three kinds of retinal cells. J Photochem Photobiol B. 2021;214:112099. doi:10.1016/j.jphotobiol.2020.112099

Menéndez-Velázquez A, García-Delgado AB, Morales D. Human-Centric Lighting: Rare-Earth-Free Photoluminescent Materials for Correlated Color Temperature Tunable White LEDs. Int J Mol Sci. 2023;24(4):3602. doi:10.3390/ijms24043602

IEC 62471. Photobiological safety of lamps and lamp systems. Published online 2006.

Norton TT, Siegwart JT. Light levels, refractive development, and myopia--a speculative review. Exp Eye Res. 2013;114:48-57. doi:10.1016/j.exer.2013.05.004

Ouyang X, Yang J, Hong Z, Wu Y, Xie Y, Wang G. Mechanisms of blue light-induced eye hazard and protective measures: a review. Biomed Pharmacother Biomedecine Pharmacother. 2020;130:110577. doi:10.1016/j.biopha.2020.110577

O’Hagan JB, Khazova M, Price LLA. Low-energy light bulbs, computers, tablets and the blue light hazard. Eye Lond Engl. 2016;30(2):230-233. doi:10.1038/eye.2015.261

Russo A, Boldini A, Romano D, et al. Myopia: Mechanisms and Strategies to Slow Down Its Progression. J Ophthalmol. 2022;2022:1004977. doi:10.1155/2022/1004977

Gajjar S, Ostrin LA. A systematic review of near work and myopia: measurement, relationships, mechanisms and clinical corollaries. Acta Ophthalmol (Copenh). 2022;100(4):376-387. doi:10.1111/aos.15043

Gupta S, Joshi A, Saxena H, Chatterjee A. Outdoor activity and myopia progression in children: A follow-up study using mixed-effects model. Indian J Ophthalmol. 2021;69(12):3446-3450. doi:10.4103/ijo.IJO_3602_20

Biswas S, El Kareh A, Qureshi M, et al. The influence of the environment and lifestyle on myopia. J Physiol Anthropol. 2024;43(1):7. doi:10.1186/s40101-024-00354-7

Lin G, Taylor C, Rucker F. Effect of duration, and temporal modulation, of monochromatic light on emmetropization in chicks. Vision Res. 2020;166:12-19. doi:10.1016/j.visres.2019.11.002

Rucker FJ, Wallman J. Cone signals for spectacle-lens compensation: differential responses to short and long wavelengths. Vision Res. 2008;48(19):1980-1991. doi:10.1016/j.visres.2008.06.003

Jiang X, Pardue MT, Mori K, et al. Violet light suppresses lens-induced myopia via neuropsin (OPN5) in mice. Proc Natl Acad Sci U S A. 2021;118(22):e2018840118. doi:10.1073/pnas.2018840118

Strickland R, Landis EG, Pardue MT. Short-Wavelength (Violet) Light Protects Mice From Myopia Through Cone Signaling. Invest Ophthalmol Vis Sci. 2020;61(2):13. doi:10.1167/iovs.61.2.13

Jiang L, Zhang S, Schaeffel F, et al. Interactions of chromatic and lens-induced defocus during visual control of eye growth in guinea pigs (Cavia porcellus). Vision Res. 2014;94:24-32. doi:10.1016/j.visres.2013.10.020

Torii H, Kurihara T, Seko Y, et al. Violet Light Exposure Can Be a Preventive Strategy Against Myopia Progression. EBioMedicine. 2017;15:210-219. doi:10.1016/j.ebiom.2016.12.007

Ward AH, Norton TT, Huisingh CE, Gawne TJ. The hyperopic effect of narrow-band long-wavelength light in tree shrews increases non-linearly with duration. Vision Res. 2018;146-147:9-17. doi:10.1016/j.visres.2018.03.006

Gawne TJ, Ward AH, Norton TT. Juvenile Tree Shrews Do Not Maintain Emmetropia in Narrow-band Blue Light. Optom Vis Sci Off Publ Am Acad Optom. 2018;95(10):911-920. doi:10.1097/OPX.0000000000001283

Smith EL, Hung LF, Arumugam B, Holden BA, Neitz M, Neitz J. Effects of Long-Wavelength Lighting on Refractive Development in Infant Rhesus Monkeys. Invest Ophthalmol Vis Sci. 2015;56(11):6490-6500. doi:10.1167/iovs.15-17025

Thakur S, Dhakal R, Verkicharla PK. Short-Term Exposure to Blue Light Shows an Inhibitory Effect on Axial Elongation in Human Eyes Independent of Defocus. Invest Ophthalmol Vis Sci. 2021;62(15):22. doi:10.1167/iovs.62.15.22

Yang J, Ouyang X, Fu H, et al. Advances in biomedical study of the myopia-related signaling pathways and mechanisms. Biomed Pharmacother Biomedecine Pharmacother. 2022;145:112472. doi:10.1016/j.biopha.2021.112472

Li L, Yu Y, Zhuang Z, Wu Q, Lin S, Hu J. Circadian rhythm, ipRGCs, and dopamine signalling in myopia. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol. 2024;262(3):983-990. doi:10.1007/s00417-023-06276-x

Chakraborty R, Landis EG, Mazade R, et al. Melanopsin modulates refractive development and myopia. Exp Eye Res. 2022;214:108866. doi:10.1016/j.exer.2021.108866

Rucker FJ, Eskew RT, Taylor C. Signals for defocus arise from longitudinal chromatic aberration in chick. Exp Eye Res. 2020;198:108126. doi:10.1016/j.exer.2020.108126

Marek V, Mélik-Parsadaniantz S, Villette T, et al. Blue light phototoxicity toward human corneal and conjunctival epithelial cells in basal and hyperosmolar conditions. Free Radic Biol Med. 2018;126:27-40. doi:10.1016/j.freeradbiomed.2018.07.012

Craig JP, Nelson JD, Azar DT, et al. TFOS DEWS II Report Executive Summary. Ocul Surf. 2017;15(4):802-812. doi:10.1016/j.jtos.2017.08.003

Sheppard AL, Wolffsohn JS. Digital eye strain: prevalence, measurement and amelioration. BMJ Open Ophthalmol. 2018;3(1):e000146. doi:10.1136/bmjophth-2018-000146

Lee B, Afshari NA, Shaw PX. Oxidative stress and antioxidants in cataract development. Curr Opin Ophthalmol. 2024;35(1):57-63. doi:10.1097/ICU.0000000000001009

Zhao ZC, Zhou Y, Tan G, Li J. Research progress about the effect and prevention of blue light on eyes. Int J Ophthalmol. 2018;11(12):1999-2003. doi:10.18240/ijo.2018.12.20

Hsueh YJ, Chen YN, Tsao YT, Cheng CM, Wu WC, Chen HC. The Pathomechanism, Antioxidant Biomarkers, and Treatment of Oxidative Stress-Related Eye Diseases. Int J Mol Sci. 2022;23(3):1255. doi:10.3390/ijms23031255

Antemie RG, Samoilă OC, Clichici SV. Blue Light-Ocular and Systemic Damaging Effects: A Narrative Review. Int J Mol Sci. 2023;24(6):5998. doi:10.3390/ijms24065998

Wirz-Justice A, Skene DJ, Münch M. The relevance of daylight for humans. Biochem Pharmacol. 2021;191:114304. doi:10.1016/j.bcp.2020.114304

Moyano DB, Sola Y, González-Lezcano RA. Blue-Light Levels Emitted from Portable Electronic Devices Compared to Sunlight. Energies. 2020;13(16):4276. doi:10.3390/en13164276

Tosini G, Ferguson I, Tsubota K. Effects of blue light on the circadian system and eye physiology. Mol Vis. 2016;22:61-72.

Mainster MA, Turner PL. Blue-blocking IOLs decrease photoreception without providing significant photoprotection. Surv Ophthalmol. 2010;55(3):272-289. doi:10.1016/j.survophthal.2009.07.006

Position Statement on the Blue Light Hazard (April 23, 2019) | CIE. Accessed June 10, 2024. https://cie.co.at/publications/position-statement-blue-light-hazard-april-23-2019

Tso MO, La Piana FG. The human fovea after sungazing. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol. 1975;79(6):OP788-795.

Mainster MA, Findl O, Dick HB, et al. The Blue Light Hazard Versus Blue Light Hype. Am J Ophthalmol. 2022;240:51-57. doi:10.1016/j.ajo.2022.02.016

Fleckenstein M, Keenan TDL, Guymer RH, et al. Age-related macular degeneration. Nat Rev Dis Primer. 2021;7(1):31. doi:10.1038/s41572-021-00265-2

Zhou H, Zhang H, Yu A, Xie J. Association between sunlight exposure and risk of age-related macular degeneration: a meta-analysis. BMC Ophthalmol. 2018;18(1):331. doi:10.1186/s12886-018-1004-y

Leung TW, Li RWH, Kee CS. Blue-Light Filtering Spectacle Lenses: Optical and Clinical Performances. PloS One. 2017;12(1):e0169114. doi:10.1371/journal.pone.0169114

Baldasso M, Roy M, Boon MY, Dain SJ. Effect of blue-blocking lenses on colour discrimination. Clin Exp Optom. 2021;104(1):56-61. doi:10.1111/cxo.13139

Alzahran HS, Roy M, Honson V, Khuu SK. Effect of blue-blocking lenses on colour contrast sensitivity. Clin Exp Optom. 2021;104(2):207-214. doi:10.1111/cxo.13135

Vagge A, Ferro Desideri L, Del Noce C, Di Mola I, Sindaco D, Traverso CE. Blue light filtering ophthalmic lenses: A systematic review. Semin Ophthalmol. 2021;36(7):541-548. doi:10.1080/08820538.2021.1900283

Singh S, Keller PR, Busija L, et al. Blue-light filtering spectacle lenses for visual performance, sleep, and macular health in adults. Cochrane Database Syst Rev. 2023;8(8):CD013244. doi:10.1002/14651858.CD013244.pub2

Desmettre T, Baillif S, Mathis T, Gatinel D, Mainster M. [Blue light and intraocular lenses (IOLs): Beliefs and realities]. J Fr Ophtalmol. 2024;47(2):104043. doi:10.1016/j.jfo.2023.104043

Lian Y, Lu W, Huang H, Wu G, Xu A, Jin W. The Long-Term Effect of Blue-Light Blocking Spectacle Lenses on Adults’ Contrast Perception. Front Neurosci. 2022;16:898489. doi:10.3389/fnins.2022.898489

Henderson BA, Grimes KJ. Blue-blocking IOLs: a complete review of the literature. Surv Ophthalmol. 2010;55(3):284-289. doi:10.1016/j.survophthal.2009.07.007

Tosini G. Blue-light-blocking Lenses in Eyeglasses: A Question of Timing. Optom Vis Sci Off Publ Am Acad Optom. 2022;99(3):228-229. doi:10.1097/OPX.0000000000001866

Digital Devices and Your Eyes. American Academy of Ophthalmology. Published November 27, 2023. Accessed April 29, 2024. https://www.aao.org/eye-health/tips-prevention/digital-devices-your-eyes

Downloads

  • PDF

Published

2024-09-04

How to Cite

1.
ŻUROWSKA, Emilia, GUDERSKA, Urszula, KRAWIEL, Karolina, KRÓL, Marek, KURZEJA, Jacek, MARKOWSKA, Iga, PIOTROWICZ, Hubert and PIOTROWICZ, Katarzyna. Is blue light solely detrimental for human eyes? A concise overview of the current knowledge on how blue light affects eye health. Quality in Sport. Online. 4 September 2024. Vol. 21, p. 52981. [Accessed 5 July 2025]. DOI 10.12775/QS.2024.21.52981.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 21 (2024)

Section

Medical Sciences

License

Copyright (c) 2024 Emilia Żurowska, Urszula Guderska, Karolina Krawiel, Marek Król, Jacek Kurzeja, Iga Markowska, Hubert Piotrowicz, Katarzyna Piotrowicz

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats

Number of views and downloads: 418
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

blue-blocking lenses, blue light, light-emitting diodes, ocular growth, oxidative stress, phototoxicity
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop