Can vitamin supplementation improve quality of life and disease severity in patients with rheumatoid arthritis, or is physical activity enough?
DOI:
https://doi.org/10.12775/QS.2024.16.52874Keywords
Rheumathology, rheumatoid arthritis, phisycal activity, Quality of Life, vitamins, vitamin DAbstract
Introduction: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation and progressive joint destruction, significantly impacting quality of life. While conventional treatments focus on managing symptoms and slowing disease progression through pharmacological means, the potential role of complementary therapies like vitamin supplementation or increased physical activity has garnered increasing interest.
Aim of the Study: This narrative review explores the existing literature on the efficacy and mechanisms of various vitamins in the management of RA. By synthesizing current research findings, we aim to provide a comprehensive overview of how vitamin supplementation might influence RA outcomes, offering insights into potential integrative approaches to enhance patient care.
Methods and Materials: A thorough search was conducted using PubMed and Google Scholar, focusing on literature published in the past five years. Vitamins with potential impacts on RA progression were identified and paired with the term "Rheumatoid Arthritis" to collect data on their influence on the disease's incidence and management, as well as the mechanisms involved. Additionally, references from selected articles were reviewed and included in the analysis. This method ensured a comprehensive evaluation of the current evidence regarding vitamin supplementation in RA treatment. Similarly, studies on the impact of physical activity on RA were also reviewed.
Results: The influence of physical activity on serum inflammatory markers in RA patients was limited. Vitamin D supplementation significantly reduced disease activity, alleviated pain, and mitigated methotrexate-related side effects, especially in patients with baseline vitamin D deficiency or lower serum levels. In contrast, other vitamins have not exhibited the same positive effects. These findings underscore the need for continued research to optimize the role of various vitamins in managing RA effectively.
References
Smolen, J., Aletaha, D., Barton, A., et al. (2018). Rheumatoid arthritis. Nature Reviews Disease Primers, 4, 18001. https://doi.org/10.1038/nrdp.2018.1
Firestein, G., & McInnes, I. B. (2017). Immunopathogenesis of rheumatoid arthritis. Immunity, 46(2), 183–196.
Skoczyńska, M., & Świerkot, J. (2018). The role of diet in rheumatoid arthritis. Reumatologia, 56(4), 259–267. https://doi.org/10.5114/reum.2018.77979
Zapatera García, B., Prados, A., Gómez-Martínez, S., & Marcos, A. (2015). Immunonutrition: Methodology and applications. Nutricion Hospitalaria, 31(Suppl 3), 145–154. https://doi.org/10.3305/nh.2015.31.sup3.8762.
Aggarwal, A., Chandran, S., & Misra, R. (2006). Physical, psychosocial and economic impact of rheumatoid arthritis: A pilot study of patients seen at a tertiary care referral centre. National Medical Journal of India, 19(4), 187.
Uhlig, T., Moe, R. H., & Kvien, T. K. (2014). The burden of disease in rheumatoid arthritis. Pharmacoeconomics, 32(9), 841–851. https://doi.org/10.1007/s40273-014-0174-6
Lajas, C., Abasolo, L., Bellajdel, B., Hernández-García, C., Carmona, L., Vargas, E., Lázaro, P., & Jover, J. A. (2003). Costs and predictors of costs in rheumatoid arthritis: A prevalence-based study. Arthritis & Rheumatism, 49(1), 64–70. https://doi.org/10.1002/art.10905
Nelson, J., Sjöblom, H., Gjertsson, I., Ulven, S. M., Lindqvist, H. M., & Bärebring, L. (2020). Do interventions with diet or dietary supplements reduce the disease activity score in rheumatoid arthritis? A systematic review of randomized controlled trials. Nutrients, 12(10), 2991. https://doi.org/10.3390/nu12102991
Katz, P., Andonian, B. J., & Huffman, K. M. (2020). Benefits and promotion of physical activity in rheumatoid arthritis. Current Opinion in Rheumatology, 32(3), 307-314. https://doi.org/10.1097/BOR.0000000000000696
Devries, S. (2019). A global deficiency of nutrition education in physician training: The low hanging fruit in medicine remains on the vine. The Lancet Planetary Health, 3(9), e371–e372. https://doi.org/10.1016/S2542-5196(19)30173-1
Hakkinen, A., Sokka, T., Kotaniemi, A., & Hannonen, P. (2001). A randomized two-year study of the effects of dynamic strength training on muscle strength, disease activity, functional capacity, and bone mineral density in early rheumatoid arthritis. Arthritis & Rheumatism, 44, 515–522.
Bartlett, D., Willis, L., Sientz, C., et al. (2018). Ten weeks of high-intensity interval walk training is associated with reduced disease activity and improved immune function in older adults with rheumatoid arthritis: A pilot study. Arthritis Research & Therapy, 20, 127.
Löfgren, M., Opava, C., Demmelmaier, I., et al. (2018). Long-term, health-enhancing physical activity is associated with reduction of pain but not pain sensitivity or improved exercise-induced hypoalgesia in persons with rheumatoid arthritis. Arthritis Research & Therapy, 20, 262.
Andrzejewski, W., Kassolik, K., Bzozowski, M., & Cymer, K. (2010). The influence of age and physical activity on the pressure sensitivity of soft tissues of the musculoskeletal system. Journal of Bodywork and Movement Therapies, 14, 382–390.
Katz, P., Margaretten, M., Gregorich, S., & Trupin, L. (2018). Physical activity to reduce fatigue in rheumatoid arthritis: A randomized controlled trial. Arthritis Care & Research, 70, 1–10.
Rongen-van Dartel, S., Repping-Wuts, J., van Hoogmoed, D., et al. (2014). Relationship between objectively assessed physical activity and fatigue in patients with rheumatoid arthritis: Inverse correlation of activity and fatigue. Arthritis Care & Research, 66, 852–860.
Björk, M., Dragioti, E., Alexandersson, H., Esbensen, B. A., Boström, C., Friden, C., Hjalmarsson, S., Hörnberg, K., Kjeken, I., Regardt, M., Sundelin, G., Sverker, A., Welin, E., & Brodin, N. (2022). Inflammatory arthritis and the effect of physical activity on quality of life and self-reported function: A systematic review and meta-analysis. Arthritis Care & Research, 74, 31-43. https://doi.org/10.1002/acr.24805
Papandreou, P., Gioxari, A., Daskalou, E., Grammatikopoulou, M. G., Skouroliakou, M., & Bogdanos, D. P. (2023). Mediterranean diet and physical activity nudges versus usual care in women with rheumatoid arthritis: Results from the MADEIRA randomized controlled trial. Nutrients, 15(3), 676. https://doi.org/10.3390/nu15030676
Burghardt, R., Kazim, M., Ruther, W., et al. (2019). The impact of physical activity on serum levels of inflammatory markers in rheumatoid arthritis: A systematic literature review. Rheumatology International, 39, 793–804.
Grübler, M. R., März, W., Pilz, S., Grammer, T. B., Trummer, C., Müllner, C., Schwetz, V., Pandis, M., Verheyen, N., & Tomaschitz, A., et al. (2017). Vitamin-D concentrations, cardiovascular risk and events—A review of epidemiological evidence. Reviews in Endocrine and Metabolic Disorders, 18, 259–272.
Provvedini, D. M., Tsoukas, C. D., Deftos, L. J., & Manolagas, S. C. (1983). 1,25-dihydroxyvitamin D3 receptors in human leukocytes. Science, 221(4616), 1181–1183. https://doi.org/10.1126/science.6310748
Dankers, W., Colin, E. M., van Hamburg, J. P., & Lubberts, E. (2017). Vitamin D in Autoimmunity: Molecular Mechanisms and Therapeutic Potential. Frontiers in immunology, 7, 697. https://doi.org/10.3389/fimmu.2016.00697
Sassi, F., Tamone, C., & D’Amelio, P. (2018). Vitamin D: Nutrient, hormone, and immunomodulator. Nutrients, 10(11), 1656.
Berer, A., Stöckl, J., Majdic, O., Wagner, T., Kollars, M., Lechner, K., Geissler, K., & Oehler, L. (2000). 1,25-Dihydroxyvitamin D(3) inhibits dendritic cell differentiation and maturation in vitro. Experimental Hematology, 28, 575–583.
Xu, H., Soruri, A., Gieseler, R. K. H., & Peters, J. H. (1993). 1,25-Dihydroxyvitamin D3 exerts opposing effects to IL-4 on MHC class II antigen expression, accessory activity, and phagocytosis of human monocytes. Scandinavian Journal of Immunology, 38, 535–540.
D'Ambrosio, D., Cippitelli, M., Cocciolo, M. G., Mazzeo, D., Di Lucia, P., Lang, R., Sinigaglia, F., & Panina-Bordignon, P. (1998). Inhibition of IL-12 production by 1,25-dihydroxyvitamin D3. Involvement of NF-kappaB downregulation in transcriptional repression of the p40 gene. The Journal of Clinical Investigation, 101, 252–262. https://doi.org/10.1172/JCI1050
Bousso, P. (2008). T-cell activation by dendritic cells in the lymph node: Lessons from the movies. Nature Reviews Immunology, 8, 675–684. https://doi.org/10.1038/nri2379
Xie, Z., Chen, J., Zheng, C., Wu, J., Cheng, Y., Zhu, S., Lin, C., Cao, Q., Zhu, J., & Jin, T. (2017). 1,25-dihydroxyvitamin D3 -induced dendritic cells suppress experimental autoimmune encephalomyelitis by increasing proportions of the regulatory lymphocytes and reducing T helper type 1 and type 17 cells. Immunology, 152(4), 414–424. https://doi.org/10.1111/imm.12787
Colin, E. M., Asmawidjaja, P. S., van Hamburg, J. P., Mus, A. M. C., van Driel, M., Hazes, J. M. W., van Leeuwen, J. P. T. M., & Lubberts, E. (2010). 1,25-dihydroxyvitamin D3 modulates Th17 polarization and interleukin-22 expression by memory T cells from patients with early rheumatoid arthritis. Arthritis & Rheumatism, 62(1), 132–142. https://doi.org/10.1002/art.25043
Zhang, H., Shih, D. Q., & Zhang, X. (2013). Mechanisms underlying effects of 1,25-Dihydroxyvitamin D3 on the Th17 cells. European Journal of Microbiology & Immunology, 3(4), 237–240. https://doi.org/10.1556/EuJMI.3.2013.4.1
Abourazzak, F. E., Talbi, S., Aradoini, N., et al. (2015). 25-hydroxy vitamin D and its relationship with clinical and laboratory parameters in patients with rheumatoid arthritis. Clinical Rheumatology, 34, 353–357. https://doi.org/10.1007/s10067-015-2865-4
Daniel, C., Sartory, N. A., Zahn, N., Radeke, H. H., & Stein, J. M. (2008). Immune modulatory treatment of trinitrobenzene sulfonic acid colitis with calcitriol is associated with a change of a T helper (Th) 1/Th17 to a Th2 and regulatory T cell profile. Journal of Pharmacology and Experimental Therapeutics, 324(1), 23–33. https://doi.org/10.1124/jpet.107.130856
Sloka, S., Silva, C., Wang, J., & Yong, V. W. (2011). Predominance of Th2 polarization by vitamin D through a STAT6-dependent mechanism. Journal of Neuroinflammation, 8(1), 56. https://doi.org/10.1186/1742-2094-8-56
Chen, S., Sims, G. P., Chen, X. X., Gu, Y. Y., Chen, S., & Lipsky, P. E. (2007). Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. Journal of Immunology, 179(3), 1634–1647. https://doi.org/10.4049/jimmunol.179.3.1634
Ghaseminejad-Raeini, A., Ghaderi, A., Sharafi, A., Nematollahi-Sani, B., Moossavi, M., Derakhshani, A., & Sarab, G. A. (2023). Immunomodulatory actions of vitamin D in various immune-related disorders: A comprehensive review. Frontiers in Immunology, 14, 950465. https://doi.org/10.3389/fimmu.2023.950465
Cantorna, M. T., Hayes, C. E., & DeLuca, H. F. (1998). 1,25-Dihydroxycholecalciferol inhibits the progression of arthritis in murine models of human arthritis. The Journal of Nutrition, 128(1), 68–72. https://doi.org/10.1093/jn/128.1.68
Larsson, P., Mattsson, L., Klareskog, L., & Johnsson, C. (1998). A vitamin D analogue (MC 1288) has immunomodulatory properties and suppresses collagen-induced arthritis (CIA) without causing hypercalcaemia. Clinical and Experimental Immunology, 114(2), 277–283. https://doi.org/10.1046/j.1365-2249.1998.00710.x
Zhou, L., Wang, J., Li, J., Li, T., Chen, Y., June, R. R., & Zheng, S. G. (2019). 1,25-Dihydroxyvitamin D3 ameliorates collagen-induced arthritis via suppression of Th17 cells through miR-124 mediated inhibition of IL-6 signaling. Frontiers in Immunology, 10, 178. https://doi.org/10.3389/fimmu.2019.00178
Cecchetti, S., Tatar, Z., Galan, P., Pereira, B., Lambert, C., Mouterde, G., Sutton, A., Soubrier, M., & Dougados, M. (2016). Prevalence of vitamin D deficiency in rheumatoid arthritis and association with disease activity and cardiovascular risk factors: data from the COMEDRA study. Clinical and experimental rheumatology, 34(6), 984–990.
Merlino, L. A., Curtis, J., Mikuls, T. R., Cerhan, J. R., Criswell, L. A., Saag, K. G., & Iowa Women's Health Study (2004). Vitamin D intake is inversely associated with rheumatoid arthritis: results from the Iowa Women's Health Study. Arthritis and rheumatism, 50(1), 72–77. https://doi.org/10.1002/art.11434
Raterman, H. G., & Lems, W. F. (2019). Pharmacological Management of Osteoporosis in Rheumatoid Arthritis Patients: A Review of the Literature and Practical Guide. Drugs & aging, 36(12), 1061–1072. https://doi.org/10.1007/s40266-019-00714-4
Li, C., Yin, S., Yin, H., Cao, L., Zhang, T., & Wang, Y. (2018). Efficacy and safety of 22-Oxa-calcitriol in patients with rheumatoid arthritis: A phase II trial. Medical Science Monitor, 24, 9127–9135. https://doi.org/10.12659/MSM.911628
Soubrier, M., Lambert, C., Combe, B., Gaudin, P., Thomas, T., Sibilia, J., Dougados, M., & Dubost, J. J. (2018). A randomised, double-blind, placebo-controlled study assessing the efficacy of high doses of vitamin D on functional disability in patients with rheumatoid arthritis. Clinical and Experimental Rheumatology, 36(6), 1056–1060.
Adami, G., Rossini, M., Bogliolo, L., Cantatore, F. P., Varenna, M., Malavolta, N., Del Puente, A., Muratore, M., Orsolini, G., Gatti, D., Viapiana, O., & Study Group on Osteoporosis and Metabolic Skeletal Diseases of the Italian Society of Rheumatology (SIR). (2019). An exploratory study on the role of vitamin D supplementation in improving pain and disease activity in rheumatoid arthritis. Modern Rheumatology, 29(6), 1059–1062. https://doi.org/10.1080/14397595.2018.1532622
Alotaibi, M. F., Khoja, S. O., Alhejily, W. A., et al. (2020). The impact of vitamin D on the endothelium of rheumatoid arthritis patients. Egyptian Journal of Applied Sciences, 35, 200–219. https://doi.org/10.21608/EJAS.2020.136314
Lo Gullo, A., Rodríguez-Carrio, J., Aragona, C. O., Dattilo, G., Zito, C., Suárez, A., Loddo, S., Atteritano, M., Saitta, A., & Mandraffino, G. (2018). Subclinical impairment of myocardial and endothelial functionality in very early psoriatic and rheumatoid arthritis patients: Association with vitamin D and inflammation. Atherosclerosis, 271, 214-222. https://doi.org/10.1016/j.atherosclerosis.2018.03.004
Hitchon, C. A., & El-Gabalawy, H. S. (2004). Oxidation in rheumatoid arthritis. Arthritis Research & Therapy, 6, 265. https://doi.org/10.1186/ar1447
Haleagrahara, N., Swaminathan, M., Chakravarthi, S., & Radhakrishnan, A. (2014). Therapeutic efficacy of vitamin E δ-tocotrienol in collagen-induced rat model of arthritis. BioMed Research International, 2014, 539540. https://doi.org/10.1155/2014/539540
Radhakrishnan, A., Tudawe, D., Chakravarthi, S., Chiew, G. S., & Haleagrahara, N. (2014). Effect of γ-tocotrienol in counteracting oxidative stress and joint damage in collagen-induced arthritis in rats. Experimental and Therapeutic Medicine, 7, 1408-1414. https://doi.org/10.3892/etm.2014.1554
Zainal, Z., Rahim, A. A., Radhakrishnan, A. K., Chang, S. K., & Khaza’ai, H. (2019). Investigation of the curative effects of palm vitamin E tocotrienols on autoimmune arthritis disease in vivo. Scientific Reports, 9, 16793. https://doi.org/10.1038/s41598-019-53386-0
Kim, K. W., Kim, B. M., Won, J. Y., Min, H. K., Lee, S. J., Lee, S. H., & Kim, H. R. (2021). Tocotrienol regulates osteoclastogenesis in rheumatoid arthritis. Korean Journal of Internal Medicine, 36(Suppl 1), S273-S282. https://doi.org/10.3904/kjim.2021.036
Nguyen, Y., Sigaux, J., Letarouilly, J. G., Sanchez, P., Czernichow, S., Flipo, R. M., Soubrier, M., Semerano, L., Seror, R., & Sellam, J. (2021). Efficacy of oral vitamin supplementation in inflammatory rheumatic disorders: A systematic review and meta-analysis of randomized controlled trials. Nutrients, 13(1), 107. https://doi.org/10.3390/nu13010107
Kou, H., Qing, Z., & Guo, H. (2023). Effect of vitamin E supplementation in rheumatoid arthritis: A systematic review and meta-analysis. European Journal of Clinical Nutrition, 77, 166-172. https://doi.org/10.1038/s41430-022-01148-9
Abdullah, M., Jamil, R. T., & Attia, F. N. (2023). Vitamin C (Ascorbic Acid). In StatPearls. StatPearls Publishing.
Zhang, Y., Zhen, S., Xu, H., Sun, S., Wang, Z., Li, M., Zou, L., Zhang, Y., Zhao, Y., Cui, Y., & Han, J. (2024). Vitamin C alleviates rheumatoid arthritis by modulating gut microbiota balance. BioScience Trends, 18(2), 187-194. https://doi.org/10.5582/bst.2024.01037
Zhao, Y., Cheng, M., Zou, L., Yin, L., Zhong, C., Zha, Y., Zhu, X., Zhang, L., Ning, K., & Han, J. (2022). Hidden link in gut-joint axis: Gut microbes promote rheumatoid arthritis at early stage by enhancing ascorbate degradation. Gut, 71(5), 1041-1043. https://doi.org/10.1136/gutjnl-2021-325645
Tanaka, S., Nishiumi, S., Nishida, M., Mizushina, Y., Kobayashi, K., Masuda, A., Fujita, T., Morita, Y., Mizuno, S., Kutsumi, H., Azuma, T., & Yoshida, M. (2010). Vitamin K3 attenuates lipopolysaccharide-induced acute lung injury through inhibition of nuclear factor-KB activation. Clinical and Experimental Immunology, 160(2), 283-292. https://doi.org/10.1111/j.1365-2249.2010.04102.x
Fujii, S., Shimizu, A., Takeda, N., Oguchi, K., Katsurai, T., Shirakawa, H., Komai, M., & Kagechika, H. (2015). Systematic synthesis and anti-inflammatory activity of ω-carboxylated menaquinone derivatives--Investigations on identified and putative vitamin K₂ metabolites. Bioorganic & medicinal chemistry, 23(10), 2344–2352. https://doi.org/10.1016/j.bmc.2015.03.070
Shea, M. K., Dallal, G. E., Dawson-Hughes, B., Ordovas, J. M., O’Donnell, C. J., Gundberg, C. M., Peterson, J. W., & Booth, S. L. (2008). Vitamin K, circulating cytokines, and bone mineral density in older men and women. The American Journal of Clinical Nutrition, 88(2), 356-363. https://doi.org/10.1093/ajcn/88.2.356
Beugel, S., Sørensen, A. D., Hels, O., Kristensen, M., Vermeer, C., Jakobsen, J., Flynn, A., Mølgaard, C., & Cashman, K. D. (2007). Effect of phylloquinone supplementation on biochemical markers of vitamin K status and bone turnover in postmenopausal women. The British Journal of Nutrition, 97(2), 373-380. https://doi.org/10.1017/S0007114507336811
Li, J., Wang, H., & Rosenberg, P. A. (2009). Vitamin K prevents oxidative cell death by inhibiting activation of 12‐lipoxygenase in developing oligodendrocytes. Journal of neuroscience research, 87(9), 1997-2005.
Okamoto, H., Shidara, K., Hoshi, D., & Kamatani, N. (2007). Anti-arthritis effects of vitamin K2 (menaquinone-4): A new potential therapeutic strategy for rheumatoid arthritis. FEBS Journal, 274(18), 4588-4594. https://doi.org/10.1111/j.1742-4658.2007.05996.x
Shishavan, N. G., Gargari, B. P., Kolahi, S., Hajialilo, M., Jafarabadi, M. A., & Javadzadeh, Y. (2015). Effects of Vitamin K on Matrix Metalloproteinase-3 and Rheumatoid Factor in Women with Rheumatoid Arthritis: A Randomized, Double-Blind, Placebo-Controlled Trial. Journal of the American College of Nutrition, 35(5), 392-398. https://doi.org/10.1080/07315724.2015.1026004
Fraenkel, L., Bathon, J. M., England, B. R., St Clair, E. W., Arayssi, T., Carandang, K., Deane, K. D., Genovese, M., Huston, K. K., Kerr, G., Kremer, J., Nakamura, M. C., Russell, L. A., Singh, J. A., Smith, B. J., Sparks, J. A., Venkatachalam, S., Weinblatt, M. E., Al-Gibbawi, M., ... Akl, E. A. (2021). 2021 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis & Rheumatology, 73(7), 1108-1123. https://doi.org/10.1002/art.41752
van Ede, A. E., Laan, R. F., Rood, M. J., Huizinga, T. W., van de Laar, M. A., van Denderen, C. J., Westgeest, T. A., Romme, T. C., de Rooij, D. J., Jacobs, M. J., de Boo, T. M., van der Wilt, G. J., Severens, J. L., Hartman, M., Krabbe, P. F., Dijkmans, B. A., Breedveld, F. C., & van de Putte, L. B. (2001). Effect of folic or folinic acid supplementation on the toxicity and efficacy of methotrexate in rheumatoid arthritis: A forty-eight week, multicenter, randomized, double-blind, placebo-controlled study. Arthritis & Rheumatism, 44(7), 1515-1524. https://doi.org/10.1002/1529-0131(200107)44:7<1515::AID-ART273>3.0.CO;2-7
Shea, B., Swinden, M., Tanjong Ghogomu, E., Ortiz, Z., Katchamart, W., Rader, T., Bombardier, C., Wells, G. A., & Tugwell, P. (2013). Folic acid and folinic acid
Stamp, L. K., O’Donnell, J. L., Frampton, C., Drake, J., Zhang, M., Barclay, M., & Chapman, P. T. (2019). A pilot randomized controlled double-blind trial of high- versus low-dose weekly folic acid in people with rheumatoid arthritis receiving methotrexate. Journal of Clinical Rheumatology, 25(5), 284-287. https://doi.org/10.1097/RHU.0000000000000917
Morgan, S. L., Baggott, J. E., Vaughn, W. H., Austin, J. S., Veitch, T. A., Lee, J. Y., Koopman, W. J., Krumdieck, C. L., & Alarcon, G. S. (1994). Supplementation with folic acid during methotrexate therapy for rheumatoid arthritis: A double-blind, placebo-controlled trial. Annals of Internal Medicine, 121(11), 833-841. https://doi.org/10.7326/0003-4819-121-11-199412010-00005
Shea, B., Swinden, M. V., Ghogomu, E. T., Ortiz, Z., Katchamart, W., Rader, T., Bombardier, C., Wells, G. A., & Tugwell, P. (2014). Folic acid and folinic acid for reducing side effects in patients receiving methotrexate for rheumatoid arthritis. The Journal of Rheumatology, 41(6), 1049-1060. https://doi.org/10.3899/jrheum.130738
Bai, K., Hong, B., Hong, Z., Wang, C., Wang, Y., Zhu, Q., Wu, F., Bai, R., & Liu, L. (2017). Selenium nanoparticles-loaded chitosan/citrate complex and its protection against oxidative stress in D-galactose-induced aging mice. Journal of Nanobiotechnology, 15, 92. https://doi.org/10.1186/s12951-017-0324-z
Tinggi, U. (2008). Selenium: its role as antioxidant in human health. Environmental Health and Preventive Medicine, 13(2), 102-108. https://doi.org/10.1007/s12199-007-0019-4
Fairweather-Tait, S. J., Bao, Y., Broadley, M. R., Collings, R., Ford, D., Hesketh, J. E., & Hurst, R. (2011). Selenium in human health and disease. Antioxidants & Redox Signaling, 14(7), 1337-1383. https://doi.org/10.1089/ars.2010.3275
Hariharan, S., & Dharmaraj, S. (2020). Selenium and selenoproteins: it's role in regulation of inflammation. Inflammopharmacology, 28(3), 667-695. https://doi.org/10.1007/s10787-020-00690-x
Zamani, B., Taghvaee, F., Akbari, H., Mohtashamian, A., & Sharifi, N. (2024). Effects of selenium supplementation on the indices of disease activity, inflammation and oxidative stress in patients with rheumatoid arthritis: A randomized clinical trial. Biological Trace Element Research, 202(4), 1457-1467. https://doi.org/10.1007/s12011-023-03782-1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Michał Andrzej Kozicz, Paulina Cuper, Ilona Jastrzębska, Krzysztof Bilecki, Hubert Gugulski, Michał Bado, Patrycja Nowoświat, Michał Goncerz
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 100
Number of citations: 0