SGLT-2 inhibitors in heart failure: a literature review on mechanisms, efficacy and safety
DOI:
https://doi.org/10.12775/QS.2024.15.52083Keywords
SGLT-2 inhibitors, heart failure, flozinsAbstract
Introduction: Sodium-glucose cotransporter-2 inhibitors (SGLT2 inhibitors), known as flozins, are a recent class of medications gaining recognition for their effectiveness in diabetes, cardiovascular health, and heart failure management. The objective of this study is to examine and integrate recent literature concerning the mechanisms, effectiveness, and safety of SGLT2 inhibitors in managing heart failure.
Material and Methods of Research: A literature review focused on keywords related to the topic was performed using databases such as PubMed and Google Scholar.
Results: SGLT-2 inhibitors, initially developed for type 2 diabetes, significantly benefit heart failure (HF) with reduced, mildly reduced, and preserved ejection fractions by improving various cardiac outcomes. These drugs lower glucose levels and promote osmotic diuresis, natriuresis, and favorable metabolic effects, reducing cardiac preload and afterload. Consequently, SGLT-2 inhibitors are now pivotal in HF treatment, enhancing cardiac efficiency and reducing HF-related hospitalizations and mortality.
Conclusion: SGLT-2 inhibitors substantially decrease cardiovascular risk and hospitalizations for heart failure in patients with or without type 2 diabetes, making them crucial in HF management. Consequently, SGLT-2 inhibitors should be considered first-line therapy for heart failure, regardless of concurrent medications, due to their efficacy and comprehensive benefits in managing this condition.
References
Xie Y, Wei Y, Li D, et al. Mechanisms of SGLT2 Inhibitors in Heart Failure and Their Clinical Value. J Cardiovasc Pharmacol. 2023 Jan 1;81(1):4-14. doi: 10.1097/FJC.0000000000001380. PMID: 36607775.
Dharia A, Khan A, Sridhar VS, et al. SGLT2 Inhibitors: The Sweet Success for Kidneys. Annu Rev Med. 2023 Jan 27;74:369-384. doi: 10.1146/annurev-med-042921-102135. PMID: 36706745.
Roger VL. Epidemiology of Heart Failure: A Contemporary Perspective. Circ Res. 2021 May 14;128(10):1421-1434. doi: 10.1161/CIRCRESAHA.121.318172. Epub 2021 May 13. PMID: 33983838.
Savarese G, Becher PM, Lund LH, et al. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res. 2023 Jan 18;118(17):3272-3287. doi: 10.1093/cvr/cvac013. Erratum in: Cardiovasc Res. 2023 Jun 13;119(6):1453. PMID: 35150240.
Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022 May 3;145(18):e895-e1032. doi: 10.1161/CIR.0000000000001063. Epub 2022 Apr 1. Erratum in: Circulation. 2022 May 3;145(18):e1033. Erratum in: Circulation. 2022 Sep 27;146(13):e185. Erratum in: Circulation. 2023 Apr 4;147(14):e674. PMID: 35363499.
Garcia-Ropero, A., Santos-Gallego, C. G., Zafar, M. U., et al. (2019). Metabolism of the failing heart and the impact of SGLT2 inhibitors. Expert Opinion on Drug Metabolism & Toxicology, 15(4), 275–285. https://doi.org/10.1080/17425255.2019.1588886
Guo, W., Zhao, L., Huang, W. et al. Sodium-glucose cotransporter 2 inhibitors, inflammation, and heart failure: a two-sample Mendelian randomization study. Cardiovasc Diabetol 23, 118 (2024). https://doi.org/10.1186/s12933-024-02210-5
Ersilia M. DeFilippis, MD, FACC, Focus on Heart Failure | SGLT2 Inhibitors in Heart Failure: The EMPEROR DELIVERs His SOLO, Jun 29, 2023, American College of Cardiology
F. Bonnet, A.J. Scheen. Effects of SGLT2 inhibitors on systemic and tissue low-grade inflammation: The potential contribution to diabetes complications and cardiovascular disease,Diabetes & Metabolism,Volume 44, Issue 6, 2018, Pages 457-464, ISSN 1262-3636, https://doi.org/10.1016/j.diabet.2018.09.005.
Palmiero, G.; Cesaro, A.; Vetrano, E.; et al. Impact of SGLT2 Inhibitors on Heart Failure: From Pathophysiology to Clinical Effects. Int. J. Mol. Sci. 2021, 22, 5863. https://doi.org/10.3390/ijms22115863
Sowton, A.P.; Griffin, J.L.; Murray, A.J. Metabolic Profiling of the Diabetic Heart: Toward a Richer Picture. Front. Physiol. 2019, 10, 639.
Nielsen, R.; Møller, N.; Gormsen, L.C.; et al. Cardiovascular Effects of Treatment With the Ketone Body 3-Hydroxybutyrate in Chronic Heart Failure Patients. Circulation 2019, 139, 2129–2141
Horton, J.L.; Davidson, M.T.; Kurishima, C.; et al. The failing heart utilizes 3-hydroxybutyrate as a metabolic stress defense. JCI Insight 2019, 4, 124079.
Verma, S.; Rawat, S.; Ho, K.L.; et al. Empagliflozin Increases Cardiac Energy Production in Diabetes. JACC Basic Transl. Sci. 2018, 3, 575–587.
Al Jobori, H.; Daniele, G.; Adams, J.; et al. Determinants of the increase in ketone concentration during SGLT2 inhibition in NGT, IFG and T2DM patients. Diabetes Obes. Metab. 2017, 19, 809–813.
Kappel, B.A.; Lehrke, M.; Schütt, K.; et al. Effect of Empagliflozin on the Metabolic Signature of Patients With Type 2 Diabetes Mellitus and Cardiovascular Disease. Circulation 2017, 136, 969–972.
Lytvyn, Y.; Bjornstad, P.; Udell, J.A.; et al. Sodium Glucose Cotransporter-2 Inhibition in Heart Failure. Circulation 2017, 136, 1643–1658.
Baartscheer, A.; Schumacher, C.A.; Wust, R.C.; et al. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia 2017, 60, 568–573.
Uthman, L.; Baartscheer, A.; Bleijlevens, B.; et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: Inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation. Diabetologia 2018, 61, 722–726
Packer, M.; Anker, S.D.; Butler, J.; et al. Effects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients with Heart Failure. JAMA Cardiol. 2017, 2, 1025–1029.
Zhao, Y.; Xu, L.; Tian, D.; et al. Effects of sodium-glucose co-transporter 2 ( SGLT2 ) inhibitors on serum uric acid level: A meta-analysis of randomized controlled trials. Diabetes Obes. Metab. 2018, 20, 458–462.
Sasso, F.C.; Pafundi, P.C.; Marfella, R.; et al. Adiponectin and insulin resistance are related to restenosis and overall new PCI in subjects with normal glucose tolerance: The prospective AIRE Study. Cardiovasc. Diabetol. 2019, 18, 1–13.
Wu, P.; Wen, W.; Li, J.; et al. Systematic Review and Meta-Analysis of Randomized Controlled Trials on the Effect of SGLT2 Inhibitor on Blood Leptin and Adiponectin Level in Patients with Type 2 Diabetes. Horm. Metab. Res. 2019, 51, 487–494.
Garvey, W.T.; Van Gaal, L.; Leiter, L.A.; et al. Effects of canagliflozin versus glimepiride on adipokines and inflammatory biomarkers in type 2 diabetes. Metabolism. 2018, 85, 32–37.
Filippas-Ntekouan, S.; Tsimihodimos, V.; Filippatos, T.; et al. SGLT-2 inhibitors: Pharmacokinetics characteristics and effects on lipids. Expert Opin. Drug Metab. Toxicol. 2018, 14, 1–9.
Tromp, J.; Lim, S.L.; Tay, W.T.; et al. Microvascular Disease in Patients With Diabetes With Heart Failure and Reduced Ejection Versus Preserved Ejection Fraction. Diabetes Care 2019, 42, 1792–1799.
Packer, M.; Kitzman, D.W. Obesity-Related Heart Failure with a Preserved Ejection Fraction. JACC Heart Fail. 2018, 6, 633–639.
Zelniker, T.A.; Braunwald, E. Clinical Benefit of Cardiorenal Effects of Sodium-Glucose Cotransporter 2 Inhibitors. J. Am. Coll. Cardiol. 2020, 75, 435–447.
Kario, K.; Okada, K.; Kato, M.; et al. Twenty-Four-Hour Blood Pressure–Lowering Effect of a Sodium-Glucose Cotransporter 2 Inhibitor in Patients With Diabetes and Uncontrolled Nocturnal Hypertension. Circulation 2019, 139, 2089–2097.
Wiviott, S.D.; Raz, I.; Bonaca, M.P.; et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2019, 380, 347–357.
Mazidi, M.; Rezaie, P.; Gao, H.; et al. Effect of Sodium-Glucose Cotransport-2 Inhibitors on Blood Pressure in People With Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of 43 Randomized Control Trials With 22 528 Patients. J. Am. Heart Assoc. 2017, 6, e004007.
Baker, W.L.; Buckley, L.F.; Kelly, M.S.; et al. Effects of Sodium-Glucose Cotransporter 2 Inhibitors on 24-Hour Ambulatory Blood Pressure: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2017, 6, e005686.
Solini, A.; Giannini, L.; Seghieri, M.; et al. Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: A pilot study. Cardiovasc. Diabetol. 2017, 16, 1–9.
Tentolouris, A.; Eleftheriadou, I.; Tzeravini, E.; et al. Endothelium as a Therapeutic Target in Diabetes Mellitus: From Basic Mechanisms to Clinical Practice. Curr. Med. Chem. 2020, 27, 1089–1131.
Ott, C.; Jumar, A.; Striepe, K.; et al. A randomised study of the impact of the SGLT2 inhibitor dapagliflozin on microvascular and macrovascular circulation. Cardiovasc. Diabetol. 2017, 16, 26.
Tanaka, H.; Takano, K.; Iijima, H.; et al. Factors Affecting Canagliflozin-Induced Transient Urine Volume Increase in Patients with Type 2 Diabetes Mellitus. Adv. Ther. 2017, 34, 436–451.
Hallow, K.M.; Helmlinger, G.; Greasley, P.J.; et al. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diabetes Obes. Metab. 2017, 20, 479–487.
Giordano, M.; Ciarambino, T.; Castellino, P.; et al. Seasonal variations of hyponatremia in the emergency department: Age-related changes. Am. J. Emerg. Med. 2017, 35, 749–752
Verma, S.; McMurray, J.J.V.; Cherney, D.Z.I. The Metabolodiuretic Promise of Sodium-Dependent Glucose Cotransporter 2 Inhibition. JAMA Cardiol. 2017, 2, 939–940
Mazer, C.D.; Hare, G.M.; Connelly, P.W.; et al. Effect of Empagliflozin on Erythropoietin Levels, Iron Stores, and Red Blood Cell Morphology in Patients With Type 2 Diabetes Mellitus and Coronary Artery Disease. Circulation 2020, 141, 704–707.
Bonnet, F.; Scheen, A.J. Effects of SGLT2 inhibitors on systemic and tissue low-grade inflammation: The potential contribution to diabetes complications and cardiovascular disease. Diabetes Metab. 2018, 44, 457–464.
Paulus, W.J. Unfolding Discoveries in Heart Failure. N. Engl. J. Med. 2020, 382, 679–682.
Schiattarella, G.; Altamirano, F.; Tong, D.; et al. Nitrosative stress drives heart failure with preserved ejection fraction. Nat. Cell Biol. 2019, 568, 351–356.
Kang, S.; Verma, S.; Hassanabad, A.F.; et al. Direct Effects of Empagliflozin on Extracellular Matrix Remodelling in Human Cardiac Myofibroblasts: Novel Translational Clues to Explain EMPA-REG OUTCOME Results. Can. J. Cardiol. 2020, 36, 543–553.
Lu, Q.; Liu, J.; Li, X.; et al. Empagliflozin attenuates ischemia and reperfusion injury through LKB1/AMPK signaling pathway. Mol. Cell. Endocrinol. 2020, 501, 110642.
Li, C.; Zhang, J.; Xue, M.; et al. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc. Diabetol. 2019, 18, 1–13
Chen, H.-Y.; Huang, J.-Y.; Siao, W.-Z.; et al. The association between SGLT2 inhibitors and new-onset arrhythmias: A nationwide population-based longitudinal cohort study. Cardiovasc. Diabetol. 2020, 19, 73.
Nguyen, T.; Wen, S.; Gong, M.; et al. Dapagliflozin Activates Neurons in the Central Nervous System and Regulates Cardiovascular Activity by Inhibiting SGLT-2 in Mice. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 2781–2799.
Santulli, G. Cardioprotective effects of autophagy: Eat your heart out, heart failure! Sci. Transl. Med. 2018, 10, 462.
Luo, G.; Jian, Z.; Zhu, Y.; et al. Sirt1 promotes autophagy and inhibits apoptosis to protect cardiomyocytes from hypoxic stress. Int. J. Mol. Med. 2019, 43, 2033–2043.
Packer, M. Autophagy stimulation and intracellular sodium reduction as mediators of the cardioprotective effect of sodium–glucose cotransporter 2 inhibitors. Eur. J. Heart Fail. 2020, 22, 618–628.
American Diabetes Association. 9. Pharmacologic approaches to glycemic treatment: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020;43:S98–110
McDonagh TA, Metra M, Adamo M, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42:3599–3726.
Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022;145:e895–1032.
Talha KM, Anker SD, Butler J. SGLT-2 Inhibitors in Heart Failure: A Review of Current Evidence. Int J Heart Fail. 2023 Mar 13;5(2):82-90. doi: 10.36628/ijhf.2022.0030. PMID: 37180562; PMCID: PMC10172076.
Padda IS, Mahtani AU, Parmar M. Sodium-Glucose Transport Protein 2 (SGLT2) Inhibitors. [Updated 2023 Jun 3]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-.
Alaa T. Makawi, Yahya M.K. Tawfik, Dave L. Dixon, et al. Expanding the Impact of SGLT2 Inhibitors in Chronic Kidney Disease. Am J Nephrol 2024; https://doi.org/10.1159/000536540
Nespoux J, Vallon V. Renal effects of SGLT2 inhibitors: an update. Curr Opin Nephrol Hypertens. 2020 Mar;29(2):190-198. doi: 10.1097/MNH.0000000000000584. PMID: 31815757; PMCID: PMC7224333.
The EMPA-KIDNEY Collaborative Group; Herrington WG, Staplin N, Wanner C, et al. Empagliflozin in Patients with Chronic Kidney Disease. N Engl J Med. 2023 Jan 12;388(2):117-127. doi: 10.1056/NEJMoa2204233. Epub 2022 Nov 4. PMID: 36331190; PMCID: PMC7614055.
Zhang Q, Zhou S, Liu L. Efficacy and safety evaluation of SGLT2i on blood pressure control in patients with type 2 diabetes and hypertension: a new meta-analysis. Diabetol Metab Syndr. 2023 Jun 7;15(1):118. doi: 10.1186/s13098-023-01092-z. PMID: 37280615; PMCID: PMC10246111.
Pan R, Zhang Y, Wang R, et al. Effect of SGLT-2 inhibitors on body composition in patients with type 2 diabetes mellitus: A meta-analysis of randomized controlled trials. PLoS One. 2022 Dec 30;17(12):e0279889. doi: 10.1371/journal.pone.0279889. PMID: 36584211; PMCID: PMC9803203.
Pereira, M.J., Eriksson, J.W. Emerging Role of SGLT-2 Inhibitors for the Treatment of Obesity. Drugs 79, 219–230 (2019). https://doi.org/10.1007/s40265-019-1057-0
Goto Y, Otsuka Y, Ashida K, et al. Improvement of skeletal muscle insulin sensitivity by 1 week of SGLT2 inhibitor use. Endocr Connect. 2020 Jul;9(7):599-606. doi: 10.1530/EC-20-0082. PMID: 32580152; PMCID: PMC7354734.
Uitrakul S, Aksonnam K, Srivichai P, et al. The Incidence and Risk Factors of Urinary Tract Infection in Patients with Type 2 Diabetes Mellitus Using SGLT2 Inhibitors: A Real-World Observational Study. Medicines (Basel). 2022 Nov 22;9(12):59. doi: 10.3390/medicines9120059. PMID: 36547992; PMCID: PMC9785475.
Anan G, Kikuchi D, Omae K, et al. Sodium-glucose cotransporter-2 inhibitors increase urinary tract infections?-a cross sectional analysis of a nationwide Japanese claims database. Endocr J. 2023 Nov 28;70(11):1103-1107. doi: 10.1507/endocrj.EJ23-0317. Epub 2023 Sep 6. PMID: 37673640.
Bartolo, C., Hall, V., Friedman, N.D. et al. Bittersweet: infective complications of drug-induced glycosuria in patients with diabetes mellitus on SGLT2-inhibitors: two case reports. BMC Infect Dis 21, 284 (2021). https://doi.org/10.1186/s12879-021-05982-3
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Klaudia Kułak, Katarzyna Chamera-Cyrek, Izabela Janik, Martyna Kuśmierska, Anna Koman, Marzena Pliszka, Katarzyna Gadżała, Karolina Palacz, Izabela Sztybór, Sabina Przygodzka
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 152
Number of citations: 0