The Impact of Gut Microbiota on Parkinson’s and Alzheimer’s Diseases: A Review of Medical Literature.
DOI:
https://doi.org/10.12775/QS.2024.15.52004Keywords
Gut microbiota,, Parkinson's disease, Alzheimer's disease, Alzheimer’s disease, neurodegeneration,, gut-brain axis, SCFA.Abstract
Introduction
Neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease (AD), pose a major public health challenge due to their progressive nature and profound impact on patients and healthcare systems. Emerging evidence underscores the key role of the gut microbiota in the pathogenesis and progression of these diseases. This paper examines the current state of knowledge on the impact of the gut microbiota on PD and AD, focusing on mechanisms such as modulation of inflammation, blood-brain barrier integrity, neurotransmitter production and amyloid pathology. Future research should target the potential hidden in the gut to fully exploit the therapeutic potential of the gut microbiota in neurodegenerative diseases.
Aim of the study
This review aims to summarize the current state of knowledge on the impact of the gut microbiota on neurodegenerative diseases, mainly Parkinson's and Alzheimer's disease.
Materials and methods
The PubMed database and articles from the last 10 years were reviewed. Keywords used in the search included “gut microbiota,” “Parkinson’s disease,” “Alzheimer’s disease,” and “gut-brain axis.” Selected studies were then analyzed to obtain information on the mechanisms of action.
Conclusions
Intestinal microflora plays a significant role in the pathogenesis of Parkinson's and Alzheimer's diseases. Modulating it through dietary interventions, probiotics and prebiotics holds promise for new therapeutic strategies. Research on the gut-brain axis and its impact on neurodegeneration will enable the creation of new therapies.
References
S. Shandilya, S. Kumar, N. Kumar Jha, K. Kumar Kesari, and J. Ruokolainen, “Interplay of gut microbiota and oxidative stress: Perspective on neurodegeneration and neuroprotection.,” J. Adv. Res., vol. 38, pp. 223–244, May 2022, doi: 10.1016/j.jare.2021.09.005.
“2024 Alzheimer’s disease facts and figures.,” Alzheimers. Dement., vol. 20, no. 5, pp. 3708–3821, May 2024, doi: 10.1002/alz.13809.
H. Chi, H.-Y. Chang, and T.-K. Sang, “Neuronal Cell Death Mechanisms in Major Neurodegenerative Diseases.,” Int. J. Mol. Sci., vol. 19, no. 10, Oct. 2018, doi: 10.3390/ijms19103082.
B. N. Dugger and D. W. Dickson, “Pathology of Neurodegenerative Diseases.,” Cold Spring Harb. Perspect. Biol., vol. 9, no. 7, Jul. 2017, doi: 10.1101/cshperspect.a028035.
A. Adak and M. R. Khan, “An insight into gut microbiota and its functionalities.,” Cell. Mol. Life Sci., vol. 76, no. 3, pp. 473–493, Feb. 2019, doi: 10.1007/s00018-018-2943-4.
N. Fierer et al., “Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil.,” Appl. Environ. Microbiol., vol. 73, no. 21, pp. 7059–7066, Nov. 2007, doi: 10.1128/AEM.00358-07.
E. Thursby and N. Juge, “Introduction to the human gut microbiota.,” Biochem. J., vol. 474, no. 11, pp. 1823–1836, May 2017, doi: 10.1042/BCJ20160510.
A. Zagórska, M. Marcinkowska, M. Jamrozik, B. Wiśniowska, and P. Paśko, “From probiotics to psychobiotics - the gut-brain axis in psychiatric disorders.,” Benef. Microbes, vol. 11, no. 8, pp. 717–732, Dec. 2020, doi: 10.3920/BM2020.0063.
H. Karakuła-Juchnowicz, H. Pankowicz, D. Juchnowicz, J. L. Valverde Piedra, and T. Małecka-Massalska, “Intestinal microbiota - a key to understanding the pathophysiology of anorexia nervosa?,” Psychiatr. Pol., vol. 51, no. 5, pp. 859–870, Oct. 2017, doi: 10.12740/PP/65308.
C. Martin-Gallausiaux, L. Marinelli, H. M. Blottière, P. Larraufie, and N. Lapaque, “SCFA: mechanisms and functional importance in the gut.,” Proc. Nutr. Soc., vol. 80, no. 1, pp. 37–49, Feb. 2021, doi: 10.1017/S0029665120006916.
D. J. Morrison and T. Preston, “Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism.,” Gut Microbes, vol. 7, no. 3, pp. 189–200, May 2016, doi: 10.1080/19490976.2015.1134082.
K. Brown, D. DeCoffe, E. Molcan, and D. L. Gibson, “Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease.,” Nutrients, vol. 4, no. 8, pp. 1095–1119, Aug. 2012, doi: 10.3390/nu4081095.
G. A. Weiss and T. Hennet, “Mechanisms and consequences of intestinal dysbiosis.,” Cell. Mol. Life Sci., vol. 74, no. 16, pp. 2959–2977, Aug. 2017, doi: 10.1007/s00018-017-2509-x.
H. Karakuła-Juchnowicz, H. Pankowicz, D. Juchnowicz, J. L. Valverde Piedra, and T. Małecka-Massalska, “Mikrobiota jelitowa - klucz do zrozumienia patofizjologii jadłowstrȩtu psychicznego?,” Psychiatr. Pol., vol. 51, no. 5, pp. 859–870, 2017, doi: 10.12740/PP/65308.
J. S. Generoso, V. V Giridharan, J. Lee, D. Macedo, and T. Barichello, “The role of the microbiota-gut-brain axis in neuropsychiatric disorders.,” Rev. Bras. Psiquiatr., vol. 43, no. 3, pp. 293–305, 2021, doi: 10.1590/1516-4446-2020-0987.
C. Gouveia Roque, H. Phatnani, and U. Hengst, “The broken Alzheimer’s disease genome.,” Cell genomics, vol. 4, no. 5, p. 100555, May 2024, doi: 10.1016/j.xgen.2024.100555.
L. Y. Tan et al., “Association of Gut Microbiome Dysbiosis with Neurodegeneration: Can Gut Microbe-Modifying Diet Prevent or Alleviate the Symptoms of Neurodegenerative Diseases?,” Life (Basel, Switzerland), vol. 11, no. 7, Jul. 2021, doi: 10.3390/life11070698.
Q. Zhang et al., “Intestinal lysozyme liberates Nod1 ligands from microbes to direct insulin trafficking in pancreatic beta cells.,” Cell Res., vol. 29, no. 7, pp. 516–532, Jul. 2019, doi: 10.1038/s41422-019-0190-3.
R. Pluta, S. Januszewski, and S. J. Czuczwar, “The Role of Gut Microbiota in an Ischemic Stroke.,” Int. J. Mol. Sci., vol. 22, no. 2, Jan. 2021, doi: 10.3390/ijms22020915.
P. Strandwitz, “Neurotransmitter modulation by the gut microbiota.,” Brain Res., vol. 1693, no. Pt B, pp. 128–133, Aug. 2018, doi: 10.1016/j.brainres.2018.03.015.
Y.-Y. Liu et al., “Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study.,” Lancet. Infect. Dis., vol. 16, no. 2, pp. 161–168, Feb. 2016, doi: 10.1016/S1473-3099(15)00424-7.
I. E. Jansen et al., “Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk.,” Nat. Genet., vol. 51, no. 3, pp. 404–413, Mar. 2019, doi: 10.1038/s41588-018-0311-9.
A. Delva, D. Van Weehaeghe, M. Koole, K. Van Laere, and W. Vandenberghe, “Loss of Presynaptic Terminal Integrity in the Substantia Nigra in Early Parkinson’s Disease.,” Mov. Disord., vol. 35, no. 11, pp. 1977–1986, Nov. 2020, doi: 10.1002/mds.28216.
K. L. Sullivan, C. L. Ward, R. A. Hauser, and T. A. Zesiewicz, “Prevalence and treatment of non-motor symptoms in Parkinson’s disease.,” Parkinsonism & related disorders, vol. 13, no. 8. England, p. 545, Dec. 2007. doi: 10.1016/j.parkreldis.2006.10.008.
D. F. Peña, J. E. Childs, S. Willett, A. Vital, C. K. McIntyre, and S. Kroener, “Vagus nerve stimulation enhances extinction of conditioned fear and modulates plasticity in the pathway from the ventromedial prefrontal cortex to the amygdala.,” Front. Behav. Neurosci., vol. 8, p. 327, 2014, doi: 10.3389/fnbeh.2014.00327.
A. Burokas, R. D. Moloney, T. G. Dinan, and J. F. Cryan, “Microbiota regulation of the Mammalian gut-brain axis.,” Adv. Appl. Microbiol., vol. 91, pp. 1–62, 2015, doi: 10.1016/bs.aambs.2015.02.001.
A. Kumaria and C. M. Tolias, “Is there a role for vagus nerve stimulation therapy as a treatment of traumatic brain injury?,” Br. J. Neurosurg., vol. 26, no. 3, pp. 316–320, Jun. 2012, doi: 10.3109/02688697.2012.663517.
D. Neren, M. D. Johnson, W. Legon, S. P. Bachour, G. Ling, and A. A. Divani, “Vagus Nerve Stimulation and Other Neuromodulation Methods for Treatment of Traumatic Brain Injury.,” Neurocrit. Care, vol. 24, no. 2, pp. 308–319, Apr. 2016, doi: 10.1007/s12028-015-0203-0.
T. R. Sampson et al., “Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease.,” Cell, vol. 167, no. 6, pp. 1469-1480.e12, Dec. 2016, doi: 10.1016/j.cell.2016.11.018.
D. Pietrucci et al., “Dysbiosis of gut microbiota in a selected population of Parkinson’s patients.,” Parkinsonism Relat. Disord., vol. 65, pp. 124–130, Aug. 2019, doi: 10.1016/j.parkreldis.2019.06.003.
F. Scheperjans et al., “Scheperjans, F., et al. (2015). Gut microbiota are related to Parkinson’s disease and clinical phenotype. Movement Disorders, 30(3), 350-358. doi: 10.1002/mds.26069. Retrieved from,” Mov. Disord., vol. 30, no. 3, pp. 350–358, Mar. 2015, doi: 10.1002/mds.26069.
A. Keshavarzian et al., “Colonic bacterial composition in Parkinson’s disease.,” Mov. Disord., vol. 30, no. 10, pp. 1351–1360, Sep. 2015, doi: 10.1002/mds.26307.
M. R. Minter et al., “Antibiotic-induced perturbations in microbial diversity during post-natal development alters amyloid pathology in an aged APP(SWE)/PS1(ΔE9) murine model of Alzheimer’s disease.,” Sci. Rep., vol. 7, no. 1, p. 10411, Sep. 2017, doi: 10.1038/s41598-017-11047-w.
R. Nagpal, B. J. Neth, S. Wang, S. P. Mishra, S. Craft, and H. Yadav, “Gut mycobiome and its interaction with diet, gut bacteria and alzheimer’s disease markers in subjects with mild cognitive impairment: A pilot study.,” EBioMedicine, vol. 59, p. 102950, Sep. 2020, doi: 10.1016/j.ebiom.2020.102950.
S. Liu, J. Gao, M. Zhu, K. Liu, and H.-L. Zhang, “Gut Microbiota and Dysbiosis in Alzheimer’s Disease: Implications for Pathogenesis and Treatment.,” Mol. Neurobiol., vol. 57, no. 12, pp. 5026–5043, Dec. 2020, doi: 10.1007/s12035-020-02073-3.
N. M. Vogt et al., “Gut microbiome alterations in Alzheimer’s disease.,” Sci. Rep., vol. 7, no. 1, p. 13537, Oct. 2017, doi: 10.1038/s41598-017-13601-y.
Y. He, B. Li, D. Sun, and S. Chen, “Gut Microbiota: Implications in Alzheimer’s Disease.,” J. Clin. Med., vol. 9, no. 7, Jun. 2020, doi: 10.3390/jcm9072042.
X. Zhan, B. Stamova, and F. R. Sharp, “Lipopolysaccharide Associates with Amyloid Plaques, Neurons and Oligodendrocytes in Alzheimer’s Disease Brain: A Review.,” Front. Aging Neurosci., vol. 10, p. 42, 2018, doi: 10.3389/fnagi.2018.00042.
Y. Kobayashi, T. Kuhara, M. Oki, and J.-Z. Xiao, “Effects of Bifidobacterium breve A1 on the cognitive function of older adults with memory complaints: a randomised, double-blind, placebo-controlled trial.,” Benef. Microbes, vol. 10, no. 5, pp. 511–520, May 2019, doi: 10.3920/BM2018.0170.
M. Barichella et al., “Probiotics and prebiotic fiber for constipation associated with Parkinson disease: An RCT.,” Neurology, vol. 87, no. 12, pp. 1274–1280, Sep. 2016, doi: 10.1212/WNL.0000000000003127.
E. Akbari et al., “Effect of Probiotic Supplementation on Cognitive Function and Metabolic Status in Alzheimer’s Disease: A Randomized, Double-Blind and Controlled Trial.,” Front. Aging Neurosci., vol. 8, p. 256, 2016, doi: 10.3389/fnagi.2016.00256.
E. Cassani et al., “Use of probiotics for the treatment of constipation in Parkinson’s disease patients.,” Minerva Gastroenterol. Dietol., vol. 57, no. 2, pp. 117–121, Jun. 2011.
L. J. Dominguez, G. Di Bella, N. Veronese, and M. Barbagallo, “Impact of Mediterranean Diet on Chronic Non-Communicable Diseases and Longevity.,” Nutrients, vol. 13, no. 6, Jun. 2021, doi: 10.3390/nu13062028.
I. Grabska-Kobyłecka et al., “Polyphenols and Their Impact on the Prevention of Neurodegenerative Diseases and Development.,” Nutrients, vol. 15, no. 15, Aug. 2023, doi: 10.3390/nu15153454.
O. Stefaniak, M. Dobrzyńska, S. Drzymała-Czyż, and J. Przysławski, “Diet in the Prevention of Alzheimer’s Disease: Current Knowledge and Future Research Requirements.,” Nutrients, vol. 14, no. 21, Oct. 2022, doi: 10.3390/nu14214564.
N. Gaspard et al., “New-onset refractory status epilepticus (NORSE) and febrile infection-related epilepsy syndrome (FIRES): State of the art and perspectives.,” Epilepsia, vol. 59, no. 4, pp. 745–752, Apr. 2018, doi: 10.1111/epi.14022.
Ş. Ayten and S. Bilici, “Modulation of Gut Microbiota Through Dietary Intervention in Neuroinflammation and Alzheimer’s and Parkinson’s Diseases,” Curr. Nutr. Rep., pp. 82–96, 2024, doi: 10.1007/s13668-024-00539-7.
Q.-J. Yu et al., “Parkinson disease with constipation: clinical features and relevant factors,” Sci. Rep., vol. 8, no. 1, p. 567, Jan. 2018, doi: 10.1038/s41598-017-16790-8.
A. Mulak, M. Koszewicz, M. Panek-Jeziorna, E. Koziorowska-Gawron, and S. Budrewicz, “Fecal Calprotectin as a Marker of the Gut Immune System Activation Is Elevated in Parkinson’s Disease.,” Front. Neurosci., vol. 13, p. 992, 2019, doi: 10.3389/fnins.2019.00992.
C. Rusch et al., “Mediterranean Diet Adherence in People With Parkinson’s Disease Reduces Constipation Symptoms and Changes Fecal Microbiota After a 5-Week Single-Arm Pilot Study.,” Front. Neurol., vol. 12, p. 794640, 2021, doi: 10.3389/fneur.2021.794640.
P. Zhang et al., “Alterations to the microbiota-colon-brain axis in high-fat-diet-induced obese mice compared to diet-resistant mice.,” J. Nutr. Biochem., vol. 65, pp. 54–65, Mar. 2019, doi: 10.1016/j.jnutbio.2018.08.016.
H. S. Kim et al., “Gram-negative bacteria and their lipopolysaccharides in Alzheimer’s disease: pathologic roles and therapeutic implications.,” Transl. Neurodegener., vol. 10, no. 1, p. 49, Dec. 2021, doi: 10.1186/s40035-021-00273-y.
N. Saiyasit et al., “Gut dysbiosis develops before metabolic disturbance and cognitive decline in high-fat diet-induced obese condition.,” Nutrition, vol. 69, p. 110576, Jan. 2020, doi: 10.1016/j.nut.2019.110576.
K. M. Tun et al., “Efficacy and Safety of Fecal Microbiota Transplantation in Treatment of Clostridioides difficile Infection among Pediatric Patients: A Systematic Review and Meta-Analysis.,” Microorganisms, vol. 10, no. 12, Dec. 2022, doi: 10.3390/microorganisms10122450.
K. R. Conover et al., “Fecal Microbiota Transplantation for Clostridioides difficile Infection in Immunocompromised Pediatric Patients.,” J. Pediatr. Gastroenterol. Nutr., vol. 76, no. 4, pp. 440–446, Apr. 2023, doi: 10.1097/MPG.0000000000003714.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Joanna Jakubiec, Julita Gmitrzuk, Zuzanna Malinka, Katarzyna Wiśniewska, Anna Jachymek, Martyna Opatowska, Tomasz Kucharski, Marta Piotrowska
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 136
Number of citations: 0