The importance of using methods of selective modification of neuronal function in the pathogenesis and therapy of Parkinson's disease
DOI:
https://doi.org/10.12775/QS.2024.15.51975Keywords
Parkinson’s disease, optogenetics, neurodegenerative diseasesAbstract
Introduction: Parkinson's disease (PD) is one of the most common neurodegenerative diseases that mainly affects older people over 60 years of age. Since life expectancy is increasing not only in Europe but also around the world, the number of people suffering from PD will gradually increase.
State of knowledge: One of the newest techniques used to study the mechanisms of diseases of the nervous system, which allows monitoring the activity of neurons by modifying their functions, is optogenetics. This method involves controlling neuronal activity using light. The sensitivity of cells to light is achieved by introducing into the body the genes of ion channels from algae or bacteria, which are incorporated into the cell membrane and then become excited when exposed to light. Depending on the gene used, the activity of a nerve cell can be intensified or inhibited. An important advantage of the method is the possibility of using it in vivo and recording the results in real time.
Summary: This publication aims to present the basics of optogenetics and is a review of works related to its use in the study of PD pathomechanism. For this purpose, the PubMed and Google Scholar databases were verified using the following words: "Parkinson optogenetic", "optogenetic stimulation", "channelrhodopsin".
References
Deisseroth K. Controlling the Brain with Light. Scientific American. 2010;303(5):48-55. doi:10.1038/scientificamerican1110-48
Oesterhelt D, Stoeckenius W. Rhodopsin-like Protein from the Purple Membrane of Halobacterium halobium. Nature New Biology. 1971;233(39):149-152. doi:10.1038/newbio233149a0
Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience. 2005;8(9):1263-1268. doi:10.1038/nn1525
Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A. Light Activation of Channelrhodopsin-2 in Excitable Cells of Caenorhabditis elegans Triggers Rapid Behavioral Responses. CB/Current Biology. 2005;15(24):2279-2284. doi:10.1016/j.cub.2005.11.032
Zhang F, Wang LP, Brauner M, et al. Multimodal fast optical interrogation of neural circuitry. Nature. 2007;446(7136):633-639. doi:10.1038/nature05744
Lim SAO, Surmeier DJ. Enhanced GABAergic inhibition of cholinergic interneurons in the ZQ175+/− mouse model of Huntington’s Disease. Frontiers in Systems Neuroscience. 2021;14. doi:10.3389/fnsys.2020.626412
Osawa SI, Tominaga T. Application of optogenetics in Epilepsy research. In: Advances in Experimental Medicine and Biology. ; 2021:557-562. doi:10.1007/978-981-15-8763-4_39
Yu C, Cassar IR, Sambangi J, Grill WM. Frequency-Specific optogenetic deep brain stimulation of subthalamic nucleus improves parkinsonian motor behaviors. the Journal of Neuroscience/the Journal of Neuroscience. 2020;40(22):4323-4334. doi:10.1523/jneurosci.3071-19.2020
Zhang Z, Jing Y, Ma Y, et al. Driving GABAergic neurons optogenetically improves learning, reduces amyloid load and enhances autophagy in a mouse model of Alzheimer’s disease. Biochemical and Biophysical Research Communications. 2020;525(4):928-935. doi:10.1016/j.bbrc.2020.03.004
Jiang C, Li HT, Zhou YM, Wang X, Wang L, Liu ZQ. Cardiac optogenetics: a novel approach to cardiovascular disease therapy. Europace. December 2017. doi:10.1093/europace/eux345
Guru A, Post RJ, Ho YY, Warden MR. Making sense of optogenetics. International Journal of Neuropsychopharmacology. 2015;18(11):pyv079. doi:10.1093/ijnp/pyv079
Ji ZG, Wang H. ChR2 transgenic animals in peripheral sensory system: Sensing light as various sensations. Life Sciences. 2016;150:95-102. doi:10.1016/j.lfs.2016.02.057
Klapoetke NC, Murata Y, Kim SS, et al. Independent optical excitation of distinct neural populations. Nature Methods. 2014;11(3):338-346. doi:10.1038/nmeth.2836
Fenno L, Yizhar O, Deisseroth K. The development and application of optogenetics. Annual Review of Neuroscience. 2011;34(1):389-412. doi:10.1146/annurev-neuro-061010-113817
Berndt A, Schoenenberger P, Mattis J, et al. High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(18):7595-7600. doi:10.1073/pnas.1017210108
Yang F, Tu J, Pan J q, et al. Light-controlled inhibition of malignant glioma by opsin gene transfer. Cell Death and Disease. 2013;4(10):e893. doi:10.1038/cddis.2013.425
Guru A, Post RJ, Ho YY, Warden MR. Making sense of optogenetics. International Journal of Neuropsychopharmacology. 2015;18(11):pyv079. doi:10.1093/ijnp/pyv079
Rindner DJ, Lur G. Practical considerations in an era of multicolor optogenetics. Frontiers in Cellular Neuroscience. 2023;17. doi:10.3389/fncel.2023.1160245
Jiang J, Cui H, Rahmouni K. Optogenetics and pharmacogenetics: principles and applications. American Journal of Physiology Regulatory, Integrative and Comparative Physiology/American Journal of Physiology Regulatory, Integrative, and Comparative Physiology. 2017;313(6):R633-R645. doi:10.1152/ajpregu.00091.2017
Bott JB, Héraud C, Cosquer B, et al. APOE-Sensitive cholinergic sprouting compensates for hippocampal dysfunctions due to reduced entorhinal input. the Journal of Neuroscience/the Journal of Neuroscience. 2016;36(40):10472-10486. doi:10.1523/jneurosci.1174-16.2016
Miyashita T, Shao YR, Chung J, Pourzia O, Feldman DE. Long-term channelrhodopsin-2 (ChR2) expression can induce abnormal axonal morphology and targeting in cerebral cortex. Frontiers in Neural Circuits. 2013;7. doi:10.3389/fncir.2013.00008
Shim HJ, Im GH, Jung WB, et al. Protocol for mouse optogenetic fMRI at ultrahigh magnetic fields. STAR Protocols. 2022;3(4):101846. doi:10.1016/j.xpro.2022.101846
Van Duyne GD. Cre recombinase. Microbiology Spectrum. 2015;3(1). doi:10.1128/microbiolspec.mdna3-0014-2014
Kim H, Kim M, Im SK, Fang S. Mouse Cre-LoxP system: general principles to determine tissue-specific roles of target genes. Laboratory Animal Research. 2018;34(4):147. doi:10.5625/lar.2018.34.4.147
Warden MR, Cardin JA, Deisseroth K. Optical neural interfaces. Annual Review of Biomedical Engineering. 2014;16(1):103-129. doi:10.1146/annurev-bioeng-071813-104733
Tysnes OB, Storstein A. Epidemiology of Parkinson’s disease. Journal of Neural Transmission. 2017;124(8):901-905. doi:10.1007/s00702-017-1686-y
Elbaz A, Carcaillon L, Kab S, Moisan F. Epidemiology of Parkinson’s disease. Revue Neurologique. 2016;172(1):14-26. doi:10.1016/j.neurol.2015.09.012
Warren N, O’Gorman C, Lehn A, Siskind D. Dopamine dysregulation syndrome in Parkinson’s disease: a systematic review of published cases. Journal of Neurology, Neurosurgery and Psychiatry. 2017;88(12):1060-1064. doi:10.1136/jnnp-2017-315985
Segura‐Aguilar J, Paris I, Muñoz P, Ferrari E, Zecca L, Zucca FA. Protective and toxic roles of dopamine in Parkinson’s disease. Journal of Neurochemistry. 2014;129(6):898-915. doi:10.1111/jnc.12686
Jankovic J. Parkinson’s disease: clinical features and diagnosis. Journal of Neurology, Neurosurgery and Psychiatry. 2008;79(4):368-376. doi:10.1136/jnnp.2007.131045
Schapira AHV, Chaudhuri KR, Jenner P. Non-motor features of Parkinson disease. Nature Reviews Neuroscience. 2017;18(7):435-450. doi:10.1038/nrn.2017.62
Wakabayashi K, Tanji K, Odagiri S, Miki Y, Mori F, Takahashi H. The lewy body in Parkinson’s disease and related neurodegenerative disorders. Molecular Neurobiology. 2012;47(2):495-508. doi:10.1007/s12035-012-8280-y
Araújo B, Caridade-Silva R, Soares-Guedes C, et al. Neuroinflammation and Parkinson’s Disease—From Neurodegeneration to therapeutic opportunities. Cells. 2022;11(18):2908. doi:10.3390/cells11182908
Balestrino R, Schapira AHV. Parkinson disease. European Journal of Neurology. 2019;27(1):27-42. doi:10.1111/ene.14108
Nuytemans K, Theuns J, Cruts M, Van Broeckhoven C. Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Human Mutation. 2010;31(7):763-780. doi:10.1002/humu.21277
Siddiqui IJ, Pervaiz N, Abbasi AA. The Parkinson Disease gene SNCA: Evolutionary and structural insights with pathological implication. Scientific Reports. 2016;6(1). doi:10.1038/srep24475
Kluss JH, Mamais A, Cookson MR. LRRK2 links genetic and sporadic Parkinson’s disease. Biochemical Society Transactions. 2019;47(2):651-661. doi:10.1042/bst20180462
Rivero-Ríos P, Romo-Lozano M, Fasiczka R, Naaldijk Y, Hilfiker S. LRRK2-Related Parkinson’s Disease due to Altered Endolysosomal biology with variable lewy body pathology: a hypothesis. Frontiers in Neuroscience. 2020;14. doi:10.3389/fnins.2020.00556
Dawson TM, Dawson VL. The role of parkin in familial and sporadic Parkinson’s disease. Movement Disorders. 2010;25(S1). doi:10.1002/mds.22798
Vizziello M, Borellini L, Franco G, Ardolino G. Disruption of mitochondrial homeostasis: The role of PINK1 in Parkinson’s disease. Cells. 2021;10(11):3022. doi:10.3390/cells10113022
Repici M, Giorgini F. DJ-1 in Parkinson’s Disease: Clinical Insights and Therapeutic Perspectives. Journal of Clinical Medicine. 2019;8(9):1377. doi:10.3390/jcm8091377
Cardona F, Perez-Tur J. Other proteins involved in Parkinson’s disease and related disorders. Current Protein and Peptide Science/Current Protein & Peptide Science. 2017;18(7):765-778. doi:10.2174/1389203717666160311122152
Guimarães RP, Ribeiro DL, Santos KBD, Godoy LD, Corrêa MR, Padovan-Neto FE. The 6-hydroxydopamine rat model of Parkinson’s disease. Journal of Visualized Experiments. 2021;(176). doi:10.3791/62923
Mustapha M, Taib CNM. MPTP-induced mouse model of Parkinson’s disease: A promising direction of therapeutic strategies. Bosnian Journal of Basic Medical Sciences. December 2020. doi:10.17305/bjbms.2020.5181
Harvey BK, Wang Y, Hoffer BJ. Transgenic rodent models of Parkinson’s disease. In: Acta Neurochirurgica. Supplementum. ; 2009:89-92. doi:10.1007/978-3-211-78205-7_15
Batista CRA, Gomes GF, Candelario-Jalil E, Fiebich BL, De Oliveira ACP. Lipopolysaccharide-Induced Neuroinflammation as a bridge to understand Neurodegeneration. International Journal of Molecular Sciences. 2019;20(9):2293. doi:10.3390/ijms20092293
Bentea E, Verbruggen L, Massie A. The proteasome inhibition model of Parkinson’s disease. Journal of Parkinson’s Disease/Journal of Parkinson’s Disease (Online). 2017;7(1):31-63. doi:10.3233/jpd-160921
Kravitz AV, Freeze BS, Parker PRL, et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature. 2010;466(7306):622-626. doi:10.1038/nature09159
Groiss SJ, Wojtecki L, Südmeyer M, Schnitzler A. Review: Deep brain stimulation in Parkinson’s disease. Therapeutic Advances in Neurological Disorders. 2009;2(6):379-391. doi:10.1177/1756285609339382
Parker KL, Kim Y, Alberico SL, Emmons EB, Narayanan NS. Optogenetic approaches to evaluate striatal function in animal models of Parkinson disease. Dialogues in Clinical Neuroscience. 2016;18(1):99-107. doi:10.31887/dcns.2016.18.1/kparker
Ingles-Prieto A, Furthmann N, Crossman SH, et al. Optogenetic delivery of trophic signals in a genetic model of Parkinson’s disease. PLOS Genetics. 2021;17(4):e1009479. doi:10.1371/journal.pgen.1009479
Di Bisceglie Caballero S, Ces A, Liberge M, Ambroggi F, Amalric M, Ouagazzal AM. Optogenetic globus pallidus stimulation improves motor deficits in 6-Hydroxydopamine-Lesioned mouse model of Parkinson’s Disease. International Journal of Molecular Sciences. 2023;24(9):7935. doi:10.3390/ijms24097935
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Maciej Superson, Sylwia Samojedny, Julia Krasnoborska, Katarzyna Szmyt, Kamil Walczak, Klaudia Wilk-Trytko, Adrian Maj, Katarzyna Szymańska
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 100
Number of citations: 0