Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Menu
  • Home
  • Current
  • Archives
  • Announcements
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login

Quality in Sport

The importance of using methods of selective modification of neuronal function in the pathogenesis and therapy of Parkinson's disease
  • Home
  • /
  • The importance of using methods of selective modification of neuronal function in the pathogenesis and therapy of Parkinson's disease
  1. Home /
  2. Archives /
  3. Vol. 15 (2024) /
  4. Medical Sciences

The importance of using methods of selective modification of neuronal function in the pathogenesis and therapy of Parkinson's disease

Authors

  • Maciej Superson https://orcid.org/0000-0001-6891-9791
  • Sylwia Samojedny University Clinical Hospital Fryderyk Chopin, Szopena 2, 35-055 Rzeszów, Poland https://orcid.org/0009-0000-0302-4073
  • Julia Krasnoborska Medicadent Clinic, Piątkowska 110A, 60-649 Poznań, Poland https://orcid.org/0000-0002-4541-0359
  • Katarzyna Szmyt University Clinical Hospital Fryderyk Chopin, Szopena 2, 35-055 Rzeszów, Poland https://orcid.org/0000-0001-7883-0395
  • Kamil Walczak University Clinical Hospital Fryderyk Chopin, Szopena 2, 35-055 Rzeszów, Poland https://orcid.org/0009-0005-3136-846X
  • Klaudia Wilk-Trytko University Clinical Hospital Fryderyk Chopin, Szopena 2, 35-055 Rzeszów, Poland https://orcid.org/0009-0009-1507-0347
  • Adrian Maj University Clinical Hospital Fryderyk Chopin, Szopena 2, 35-055 Rzeszów, Poland https://orcid.org/0009-0004-8730-1072
  • Katarzyna Szymańska University Clinical Hospital Fryderyk Chopin, Szopena 2, 35-055 Rzeszów, Poland https://orcid.org/0009-0006-4473-3347

DOI:

https://doi.org/10.12775/QS.2024.15.51975

Keywords

Parkinson’s disease, optogenetics, neurodegenerative diseases

Abstract

Introduction: Parkinson's disease (PD) is one of the most common neurodegenerative diseases that mainly affects older people over 60 years of age. Since life expectancy is increasing not only in Europe but also around the world, the number of people suffering from PD will gradually increase.

State of knowledge: One of the newest techniques used to study the mechanisms of diseases of the nervous system, which allows monitoring the activity of neurons by modifying their functions, is optogenetics. This method involves controlling neuronal activity using light. The sensitivity of cells to light is achieved by introducing into the body the genes of ion channels from algae or bacteria, which are incorporated into the cell membrane and then become excited when exposed to light. Depending on the gene used, the activity of a nerve cell can be intensified or inhibited. An important advantage of the method is the possibility of using it in vivo and recording the results in real time.

Summary: This publication aims to present the basics of optogenetics and is a review of works related to its use in the study of PD pathomechanism. For this purpose, the PubMed and Google Scholar databases were verified using the following words: "Parkinson optogenetic", "optogenetic stimulation", "channelrhodopsin".

References

Deisseroth K. Controlling the Brain with Light. Scientific American. 2010;303(5):48-55. doi:10.1038/scientificamerican1110-48

Oesterhelt D, Stoeckenius W. Rhodopsin-like Protein from the Purple Membrane of Halobacterium halobium. Nature New Biology. 1971;233(39):149-152. doi:10.1038/newbio233149a0

Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience. 2005;8(9):1263-1268. doi:10.1038/nn1525

Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A. Light Activation of Channelrhodopsin-2 in Excitable Cells of Caenorhabditis elegans Triggers Rapid Behavioral Responses. CB/Current Biology. 2005;15(24):2279-2284. doi:10.1016/j.cub.2005.11.032

Zhang F, Wang LP, Brauner M, et al. Multimodal fast optical interrogation of neural circuitry. Nature. 2007;446(7136):633-639. doi:10.1038/nature05744

Lim SAO, Surmeier DJ. Enhanced GABAergic inhibition of cholinergic interneurons in the ZQ175+/− mouse model of Huntington’s Disease. Frontiers in Systems Neuroscience. 2021;14. doi:10.3389/fnsys.2020.626412

Osawa SI, Tominaga T. Application of optogenetics in Epilepsy research. In: Advances in Experimental Medicine and Biology. ; 2021:557-562. doi:10.1007/978-981-15-8763-4_39

Yu C, Cassar IR, Sambangi J, Grill WM. Frequency-Specific optogenetic deep brain stimulation of subthalamic nucleus improves parkinsonian motor behaviors. the Journal of Neuroscience/the Journal of Neuroscience. 2020;40(22):4323-4334. doi:10.1523/jneurosci.3071-19.2020

Zhang Z, Jing Y, Ma Y, et al. Driving GABAergic neurons optogenetically improves learning, reduces amyloid load and enhances autophagy in a mouse model of Alzheimer’s disease. Biochemical and Biophysical Research Communications. 2020;525(4):928-935. doi:10.1016/j.bbrc.2020.03.004

Jiang C, Li HT, Zhou YM, Wang X, Wang L, Liu ZQ. Cardiac optogenetics: a novel approach to cardiovascular disease therapy. Europace. December 2017. doi:10.1093/europace/eux345

Guru A, Post RJ, Ho YY, Warden MR. Making sense of optogenetics. International Journal of Neuropsychopharmacology. 2015;18(11):pyv079. doi:10.1093/ijnp/pyv079

Ji ZG, Wang H. ChR2 transgenic animals in peripheral sensory system: Sensing light as various sensations. Life Sciences. 2016;150:95-102. doi:10.1016/j.lfs.2016.02.057

Klapoetke NC, Murata Y, Kim SS, et al. Independent optical excitation of distinct neural populations. Nature Methods. 2014;11(3):338-346. doi:10.1038/nmeth.2836

Fenno L, Yizhar O, Deisseroth K. The development and application of optogenetics. Annual Review of Neuroscience. 2011;34(1):389-412. doi:10.1146/annurev-neuro-061010-113817

Berndt A, Schoenenberger P, Mattis J, et al. High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(18):7595-7600. doi:10.1073/pnas.1017210108

Yang F, Tu J, Pan J q, et al. Light-controlled inhibition of malignant glioma by opsin gene transfer. Cell Death and Disease. 2013;4(10):e893. doi:10.1038/cddis.2013.425

Guru A, Post RJ, Ho YY, Warden MR. Making sense of optogenetics. International Journal of Neuropsychopharmacology. 2015;18(11):pyv079. doi:10.1093/ijnp/pyv079

Rindner DJ, Lur G. Practical considerations in an era of multicolor optogenetics. Frontiers in Cellular Neuroscience. 2023;17. doi:10.3389/fncel.2023.1160245

Jiang J, Cui H, Rahmouni K. Optogenetics and pharmacogenetics: principles and applications. American Journal of Physiology Regulatory, Integrative and Comparative Physiology/American Journal of Physiology Regulatory, Integrative, and Comparative Physiology. 2017;313(6):R633-R645. doi:10.1152/ajpregu.00091.2017

Bott JB, Héraud C, Cosquer B, et al. APOE-Sensitive cholinergic sprouting compensates for hippocampal dysfunctions due to reduced entorhinal input. the Journal of Neuroscience/the Journal of Neuroscience. 2016;36(40):10472-10486. doi:10.1523/jneurosci.1174-16.2016

Miyashita T, Shao YR, Chung J, Pourzia O, Feldman DE. Long-term channelrhodopsin-2 (ChR2) expression can induce abnormal axonal morphology and targeting in cerebral cortex. Frontiers in Neural Circuits. 2013;7. doi:10.3389/fncir.2013.00008

Shim HJ, Im GH, Jung WB, et al. Protocol for mouse optogenetic fMRI at ultrahigh magnetic fields. STAR Protocols. 2022;3(4):101846. doi:10.1016/j.xpro.2022.101846

Van Duyne GD. Cre recombinase. Microbiology Spectrum. 2015;3(1). doi:10.1128/microbiolspec.mdna3-0014-2014

Kim H, Kim M, Im SK, Fang S. Mouse Cre-LoxP system: general principles to determine tissue-specific roles of target genes. Laboratory Animal Research. 2018;34(4):147. doi:10.5625/lar.2018.34.4.147

Warden MR, Cardin JA, Deisseroth K. Optical neural interfaces. Annual Review of Biomedical Engineering. 2014;16(1):103-129. doi:10.1146/annurev-bioeng-071813-104733

Tysnes OB, Storstein A. Epidemiology of Parkinson’s disease. Journal of Neural Transmission. 2017;124(8):901-905. doi:10.1007/s00702-017-1686-y

Elbaz A, Carcaillon L, Kab S, Moisan F. Epidemiology of Parkinson’s disease. Revue Neurologique. 2016;172(1):14-26. doi:10.1016/j.neurol.2015.09.012

Warren N, O’Gorman C, Lehn A, Siskind D. Dopamine dysregulation syndrome in Parkinson’s disease: a systematic review of published cases. Journal of Neurology, Neurosurgery and Psychiatry. 2017;88(12):1060-1064. doi:10.1136/jnnp-2017-315985

Segura‐Aguilar J, Paris I, Muñoz P, Ferrari E, Zecca L, Zucca FA. Protective and toxic roles of dopamine in Parkinson’s disease. Journal of Neurochemistry. 2014;129(6):898-915. doi:10.1111/jnc.12686

Jankovic J. Parkinson’s disease: clinical features and diagnosis. Journal of Neurology, Neurosurgery and Psychiatry. 2008;79(4):368-376. doi:10.1136/jnnp.2007.131045

Schapira AHV, Chaudhuri KR, Jenner P. Non-motor features of Parkinson disease. Nature Reviews Neuroscience. 2017;18(7):435-450. doi:10.1038/nrn.2017.62

Wakabayashi K, Tanji K, Odagiri S, Miki Y, Mori F, Takahashi H. The lewy body in Parkinson’s disease and related neurodegenerative disorders. Molecular Neurobiology. 2012;47(2):495-508. doi:10.1007/s12035-012-8280-y

Araújo B, Caridade-Silva R, Soares-Guedes C, et al. Neuroinflammation and Parkinson’s Disease—From Neurodegeneration to therapeutic opportunities. Cells. 2022;11(18):2908. doi:10.3390/cells11182908

Balestrino R, Schapira AHV. Parkinson disease. European Journal of Neurology. 2019;27(1):27-42. doi:10.1111/ene.14108

Nuytemans K, Theuns J, Cruts M, Van Broeckhoven C. Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Human Mutation. 2010;31(7):763-780. doi:10.1002/humu.21277

Siddiqui IJ, Pervaiz N, Abbasi AA. The Parkinson Disease gene SNCA: Evolutionary and structural insights with pathological implication. Scientific Reports. 2016;6(1). doi:10.1038/srep24475

Kluss JH, Mamais A, Cookson MR. LRRK2 links genetic and sporadic Parkinson’s disease. Biochemical Society Transactions. 2019;47(2):651-661. doi:10.1042/bst20180462

Rivero-Ríos P, Romo-Lozano M, Fasiczka R, Naaldijk Y, Hilfiker S. LRRK2-Related Parkinson’s Disease due to Altered Endolysosomal biology with variable lewy body pathology: a hypothesis. Frontiers in Neuroscience. 2020;14. doi:10.3389/fnins.2020.00556

Dawson TM, Dawson VL. The role of parkin in familial and sporadic Parkinson’s disease. Movement Disorders. 2010;25(S1). doi:10.1002/mds.22798

Vizziello M, Borellini L, Franco G, Ardolino G. Disruption of mitochondrial homeostasis: The role of PINK1 in Parkinson’s disease. Cells. 2021;10(11):3022. doi:10.3390/cells10113022

Repici M, Giorgini F. DJ-1 in Parkinson’s Disease: Clinical Insights and Therapeutic Perspectives. Journal of Clinical Medicine. 2019;8(9):1377. doi:10.3390/jcm8091377

Cardona F, Perez-Tur J. Other proteins involved in Parkinson’s disease and related disorders. Current Protein and Peptide Science/Current Protein & Peptide Science. 2017;18(7):765-778. doi:10.2174/1389203717666160311122152

Guimarães RP, Ribeiro DL, Santos KBD, Godoy LD, Corrêa MR, Padovan-Neto FE. The 6-hydroxydopamine rat model of Parkinson’s disease. Journal of Visualized Experiments. 2021;(176). doi:10.3791/62923

Mustapha M, Taib CNM. MPTP-induced mouse model of Parkinson’s disease: A promising direction of therapeutic strategies. Bosnian Journal of Basic Medical Sciences. December 2020. doi:10.17305/bjbms.2020.5181

Harvey BK, Wang Y, Hoffer BJ. Transgenic rodent models of Parkinson’s disease. In: Acta Neurochirurgica. Supplementum. ; 2009:89-92. doi:10.1007/978-3-211-78205-7_15

Batista CRA, Gomes GF, Candelario-Jalil E, Fiebich BL, De Oliveira ACP. Lipopolysaccharide-Induced Neuroinflammation as a bridge to understand Neurodegeneration. International Journal of Molecular Sciences. 2019;20(9):2293. doi:10.3390/ijms20092293

Bentea E, Verbruggen L, Massie A. The proteasome inhibition model of Parkinson’s disease. Journal of Parkinson’s Disease/Journal of Parkinson’s Disease (Online). 2017;7(1):31-63. doi:10.3233/jpd-160921

Kravitz AV, Freeze BS, Parker PRL, et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature. 2010;466(7306):622-626. doi:10.1038/nature09159

Groiss SJ, Wojtecki L, Südmeyer M, Schnitzler A. Review: Deep brain stimulation in Parkinson’s disease. Therapeutic Advances in Neurological Disorders. 2009;2(6):379-391. doi:10.1177/1756285609339382

Parker KL, Kim Y, Alberico SL, Emmons EB, Narayanan NS. Optogenetic approaches to evaluate striatal function in animal models of Parkinson disease. Dialogues in Clinical Neuroscience. 2016;18(1):99-107. doi:10.31887/dcns.2016.18.1/kparker

Ingles-Prieto A, Furthmann N, Crossman SH, et al. Optogenetic delivery of trophic signals in a genetic model of Parkinson’s disease. PLOS Genetics. 2021;17(4):e1009479. doi:10.1371/journal.pgen.1009479

Di Bisceglie Caballero S, Ces A, Liberge M, Ambroggi F, Amalric M, Ouagazzal AM. Optogenetic globus pallidus stimulation improves motor deficits in 6-Hydroxydopamine-Lesioned mouse model of Parkinson’s Disease. International Journal of Molecular Sciences. 2023;24(9):7935. doi:10.3390/ijms24097935

Downloads

  • PDF

Published

2024-07-04

How to Cite

1.
SUPERSON, Maciej, SAMOJEDNY, Sylwia, KRASNOBORSKA, Julia, SZMYT, Katarzyna, WALCZAK, Kamil, WILK-TRYTKO, Klaudia, MAJ, Adrian and SZYMAŃSKA, Katarzyna. The importance of using methods of selective modification of neuronal function in the pathogenesis and therapy of Parkinson’s disease. Quality in Sport. Online. 4 July 2024. Vol. 15, p. 51975. [Accessed 16 November 2025]. DOI 10.12775/QS.2024.15.51975.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 15 (2024)

Section

Medical Sciences

License

Copyright (c) 2024 Maciej Superson, Sylwia Samojedny, Julia Krasnoborska, Katarzyna Szmyt, Kamil Walczak, Klaudia Wilk-Trytko, Adrian Maj, Katarzyna Szymańska

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Stats

Number of views and downloads: 223
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Tags

Search using one of provided tags:

Parkinson’s disease, optogenetics, neurodegenerative diseases
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop