Modern methods of treating neurological diseases
DOI:
https://doi.org/10.12775/QS.2023.12.01.006Keywords
Brain-computer interface (BCI), paresis, locked-in syndrome, aphasia, vision lossAbstract
Aim of the article
The aim of the article is to summarize the current state of knowledge about brain-computer interfaces (BCI), i.e. systems that allow you to control electronic devices by recording the activity of nerve cells.
Materials and methods
The article is based on a literature review in the PubMed database.
Conclusions
Disorders of the nervous system pose a great therapeutic challenge due to the limited regenerative capacity of the nervous tissue. In the future, BCI may become an opportunity to improve the quality of life of patients with neurological diseases. Thanks to technological progress and increasing abilities in the field of physiology of neurons, the possibilities of using this system are increasing. Clinical trials have been performed on patients with various types of neurological deficits, including movement disorders and aphasia. Brain-computer interfaces can also help with vision loss, epilepsy, and many other conditions
References
Saha S, Mamun KA, Ahmed K, et al. Progress in Brain Computer Interface: Challenges and Opportunities. Front Syst Neurosci. 2021;15:578875. doi: 10.3389/fnsys.2021.578875.
Millett D,. Hans Berger: from psychic energy to the EEG. Perspect Biol Med. 2001;44(4):522-542
Kawala-Sterniuk A, Browarska N, Al-Bakri A, et al. Summary of over Fifty Years with Brain-Computer Interfaces-A Review. Brain Sci. 2021;11(1):43.
Rosenfeld JV, Wong YT. Neurobionics and the brain-computer interface: current applications and future horizons. Med J Aust. 2017;206(8):363-368.
Buzsáki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes. Nat Rev Neurosci. 2012 Jun;13(6):407-20. doi: 10.1038/nrn3241. PMID: 22595786.
Filiz E, Arslan RB. Design and Implementation of Steady State Visual Evoked Potential Based Brain Computer Interface Video Game. In: 2020 IEEE 20th Mediterranean Electrotechnical Conference (MELECON), Palermo, Italy, 2020: 335-338.
LaFleur K, Cassady K, Doud A, Shades K, Rogin E, He B. Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface. J Neural Eng. 2013 Aug;10(4):046003.
Duan X, Xie S, Xie X, Meng Y, Xu Z. Quadcopter Flight Control Using a Non-invasive Multi-Modal Brain Computer Interface. Front Neurorobot. 2019;13:23.
Mei J, Xu M, Wang L, et al. Using SSVEP-BCI to Continuous Control a Quadcopter with 4-DOF Motions. Annu Int Conf IEEE Eng Med Biol Soc. 2020;2020:4745-4748. doi: 10.1109/EMBC44109.2020.9176408.
Pais-Vieira M, Lebedev M, Kunicki C, Wang J, Nicolelis MA. A brain-to-brain interface for real-time sharing of sensorimotor information. Sci Rep. 2013;3:1319.
Rao RP, Stocco A, Bryan M, et al. A direct brain-to-brain interface in humans. PLoS One. 2014;9(11):e111332. doi: 10.1371/journal.pone.0111332.
Jiang L, Stocco A, Losey DM, Abernethy JA, Prat CS, Rao RPN. BrainNet: A Multi-Person Brain-to-Brain Interface for Direct Collaboration Between Brains. Sci Rep. 2019;9(1):6115.
Waldert S, Pistohl T, Braun C, et al. A review on directional information in neural signals for brain-machine interfaces. J Physiol Paris. 2009;103:244-254.
Miller KJ, Hermes D, Staff NP. The current state of electrocorticography-based brain-computer interfaces. Neurosurg Focus. 2020;49(1):E2. doi: 10.3171/2020.4.FOCUS20104.
Lecomte A, Descamps E, Bergaud C. A review on mechanical considerations for chronically-implanted neural probes. J Neural Eng. 2018;15(3):031001. doi:10.1088/1741-2552/aaa918.
Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB. Cortical control of a prosthetic arm for self-feeding. Nature. 2008 May 22;453(7198):1098-101. doi: 10.1038/nature06996. PMID: 18432195.
Ifft PJ, Shokur S, Li Z, Lebedev MA, Nicolelis MA. A brain-machine interface enables bimanual arm movements in monkeys. Sci Transl Med. 2013 Sep 25;5(210):210ra154. doi: 10.1126/scitranslmed.3006159. PMID: 24068740.
Hochberg LR, Bacher D, Jarosiewicz B, et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012;485(7398):372-375.
Collinger JL, Wodlinger B, Downey JE, et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet. 2013;381(9866):557-564.
Gao Q, Dou L, Belkacem AN, Chen C. Noninvasive Electroencephalogram Based Control of a Robotic Arm for Writing Task Using Hybrid BCI System. Biomed Res Int. 2017;2017:8316485.
Zhu Y, Li Y, Lu J, Li P. A Hybrid BCI Based on SSVEP and EOG for Robotic Arm Control. Front Neurorobot. 2020;14:583641.
Kawase T, Sakurada T, Koike Y, Kansaku K. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements. J Neural Eng. 2017;14(1):016015.
Benabid AL, Costecalde T, Eliseyev A, et al. An exoskeleton controlled by an epidural wireless brain-machine interface in a tetraplegic patient: a proof-of-concept demonstration. Lancet Neurol. 2019;18(12):1112-1122.
Capogrosso M, Milekovic T, Borton D, et al. A brain-spine interface alleviating gait deficits after spinal cord injury in primates. Nature. 2016;539(7628):284-288.
Papadopoulou SL, Dionyssiotis Y, Krikonis K, Lаgopati N, Kamenov I, Markoula S. Therapeutic Approaches in Locked-in Syndrome. Folia Med (Plovdiv). 2019;61(3):343-351.
Indefrey P. The spatial and temporal signatures of word production components: a critical update. Front Psychol. 2011;2:255.
Hickok G, Poeppel D. The cortical organization of speech processing. Nat Rev Neurosci. 2007;8(5):393-402. doi: 10.1038/nrn2113. PMID: 17431404.
Rabbani Q, Milsap G, Crone NE. The Potential for a Speech Brain-Computer Interface Using Chronic Electrocorticography. Neurotherapeutics. 2019;16(1):144-165.
Kennedy PR, Bakay RA. Restoration of neural output from a paralyzed patient by a direct brain connection. Neuroreport. 1998;9(8):1707-11. doi: 10.1097/00001756-199806220-00007. PMID: 9674581.
Vansteensel MJ, Pels EGM, Bleichner MG, Branco MP, Denison T, Freudenburg ZV, Gosselaar P, Leinders S, Ottens TH, Van Den Boom MA, Van Rijen PC, Aarnoutse EJ, Ramsey NF. Fully Implanted Brain-Computer Interface in a Locked-In Patient with ALS. N Engl J Med. 2016;375(21):2060-2066. doi: 10.1056/NEJMoa1608085. PMID: 27959712.
Pandarinath C, Nuyujukian P, Blabe CH, et al. High performance communication by people with paralysis using an intracortical brain-computer interface. Elife. 2017;6:e18554.
Anumanchipalli GK, Chartier J, Chang EF. Speech synthesis from neural decoding of spoken sentences. Nature. 2019;568(7753):493-498. doi: 10.1038/s41586-019-1119-1. Epub 2019 Apr 24. PMID: 31019308.
UCSF. Speech synthesis from neural decoding of spoken sentences, https://www.youtube.com/watch?v=kbX9FLJ6WKw&t=26s, 24.04.2019.
Mills JO, Jalil A, Stanga PE. Electronic retinal implants and artificial vision: journey and present. Eye (Lond). 2017;31(10):1383-1398. doi: 10.1038/eye.2017.117. PMID: 28665461.
da Cruz L, Dorn JD, Humayun MS, et al. Five-Year Safety and Performance Results from the Argus II Retinal Prosthesis System Clinical Trial. Ophthalmology. 2016;123(10):2248-2254.
Brindley GS, Lewin WS. The sensations produced by electrical stimulation of the visual cortex. J Physiol. 1968;196(2):479-93.
Winawer J, Parvizi J. Linking Electrical Stimulation of Human Primary Visual Cortex, Size of Affected Cortical Area, Neuronal Responses, and Subjective Experience. Neuron. 2016;92(6):1213-1219.
Castaldi E, Lunghi C, Morrone MC. Neuroplasticity in adult human visual cortex. Neurosci Biobehav Rev. 2020;112:542-552.
Niketeghad S, Pouratian N. Brain Machine Interfaces for Vision Restoration: The Current State of Cortical Visual Prosthetics. Neurotherapeutics. 2019;16(1):134-143.
Maksimenko VA, van Heukelum S, Makarov V, Kelderhuis J, Lüttjohann A, Koronovskii A, Hramov AE, van Luijtelaar G. Absence Seizure Control by a Brain Computer Interface. Sci Rep. 2017;7(1):2487.
Musk E. Neuralink. An Integrated Brain-Machine Interface Platform With Thousands of Channels. J Med Internet Res. 2019;21(10):e16194.
Neuralink Progress Update, Summer 2020, https://www.youtube.com/watch?v=DVvmgjBL74w, 29.08.2020.
Monkey MindPong, https://www.youtube.com/watch?v=rsCul1sp4hQ&ab_channel=Neuralink, 09.04.2021.
Pisarchik AN, Maksimenko VA, Hramov AE. From Novel Technology to Novel Applications: Comment on "An Integrated Brain-Machine Interface Platform With Thousands of Channels" by Elon Musk and Neuralink. J Med Internet Res. 2019;21(10):e16356.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Krzysztof Bednarz, Bartosz Basiaga, Sara Trojan, Marek Leśniak, Jakub Kwieciński, Sławomir Miszuda, Agnieszka Błaszczyk, Urszula Fussek-Styga, Agata Szwedkowicz, Jakub Heluszka
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Stats
Number of views and downloads: 534
Number of citations: 0