Jałowiec pospolity (Juniperus communis L.): światłożądny gatunek w cieniu zainteresowania
DOI:
https://doi.org/10.12775/KOSMOS.2025.008Słowa kluczowe
jałowiec pospolity, dwupienność, zmiany klimatu, bioróżnorodnośćAbstrakt
Zmiany klimatyczne spowodowane zwiększoną emisją antropogenicznego CO2 wywierają ogromny wpływ na ekosystemy ziemskie. Drzewa, ze względu na długowieczność, są szczególnie podatne na niekorzystne oddziaływanie szybko postępujących zmian. Z drugiej strony, zwraca się uwagę na potencjał mitygacyjny lasów, związany m.in. z wysoką bioróżnorodnością. Szczególnie ciekawym gatunkiem w kontekście zmian klimatycznych jest jałowiec pospolity (Juniperus communis L.), który choć nie jest gatunkiem lasotwórczym, pełni ważne funkcje ekosystemowe. W ostatnich latach obserwuje się zanikanie jałowca w niektórych częściach Europy, co budzi niepokój o jego długoterminowe przetrwanie, pomimo nadal dobrej kondycji genetycznej. Zwraca się uwagę na pozaprodukcyjną rolę jałowca i jego potencjał wzmacniania ekosystemów leśnych. Szczególną rolę gatunek może odgrywać na obszarach o niewielkiej zasobności, gdzie złożoność strukturalna jak i gatunkowa jest niewielka, co może zwiększać podatność na negatywne efekty zmian klimatycznych. Należy rozważyć praktyczne wykorzystanie jałowca jako gatunku wspomagającego stabilność i odporność ekosystemów.
Bibliografia
Adams R. P., Pandey R. N., 2003. Analysis of Juniperus communis and its varieties based on DNA fingerprinting. Biochemical Systematics and Ecology 31(11), 1271–1278. https://doi.org/10.1016/S0305-1978(03)00036-X
Alberto F. J., Aitken S. N., Alía R., González-Martínez S. C., Hänninen H., i in., 2013. Potential for evolutionary responses to climate change – evidence from tree populations. Global Change Biology 19(6), 1645–1661. https://doi.org/10.1111/gcb.12181
Alves de Oliveira B. F., Bottino M. J., Nobre P., Nobre C. A., 2021. Deforestation and climate change are projected to increase heat stress risk in the Brazilian Amazon. Communications Earth & Environment 2, 207. https://doi.org/10.1038/s43247-021-00275-8
Baker J., Cottrell J., Ennos R., Perry A., Green S., i in., 2025. Local genetic adaptations among remnant populations of British common juniper, Juniperus communis, indicated by a common garden trial. Ecology and Evolution 15, e71049. https://doi.org/10.1002/ece3.71049
Barrett R. D., Schluter D., 2007. Adaptation from standing genetic variation. Trends in Ecology & Evolution 23(1), 38–44. https://doi.org/10.1016/j.tree.2007.09.008
Bellard C., Thuiller W., Leroy B., Genovesi P., Bakkenes M. i in., 2013. Will climate change promote future invasions? Global Change Biology 19(12), 3740–3748. https://doi.org/10.1111/gcb.12344
Bobiński J., 1974. Jałowiec pospolity i jego rola w lesie. PWRiL, Warszawa.
Boratyński A., Boratyńska K., 2024. Jałowiec pospolity (Juniperus communis) – uwagi dotyczące stanu obecnego i przyszłości gatunku w Polsce. Rocznik Polskiego Towarzystwa Dendrologicznego 70, 9–20.
Broome A., Long D., Ward L. K., Park K. J., 2017. Promoting natural regeneration for the restoration of Juniperus communis: a synthesis of knowledge and evidence for conservation practitioners. Applied Vegetation Science 20, 397–409. https://doi.org/10.1111/avsc.12303
Büntgen U., Krusic P. J., Piermattei A., i in., 2019. Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nature Communications 10, 2171. https://doi.org/10.1038/s41467-019-10174-4
Caudullo G., Welk E., San-Miguel-Ayanz J., 2017. Chorological maps for the main European woody species. Data in Brief 12, 662–666. https://doi.org/10.1016/j.dib.2017.05.007
Carrer M., Dibona R., Frigo D., Gorlanova L., Hantemirov R., i in., 2025. Common juniper, the oldest nonclonal woody species across the tundra biome and the European continent. Ecology 106(1), e4514. https://doi.org/10.1002/ecy.4514
Charlesworth D., 1999. Theories of the evolution of dioecy, w: Geber M. A., Dawson T. E., Delph L. F. (Red.), Gender and sexual dimorphism in flowering plants. Springer-Verlag, New York, s. 33–60.
Chen K., Cai Q., Zheng N., Li Y., Lin C. i in., 2021. Forest Carbon Sink Evaluation – An Important Contribution for Carbon Neutrality. IOP Conference Series: Earth and Environmental Science 811, 012009. https://doi.org/10.1088/1755-1315/811/1/012009
Chen S., Wang W., Xu W., Wang Y., Wan H., i in., 2018. Plant diversity enhances productivity and soil carbon storage. Proceedings of the National Academy of Sciences USA 115, 4027–4032. https://doi.org/10.1073/pnas.1700298114
Cheptou P.-O., 2024. The evolutionary ecology of inbreeding depression in wild plant populations and its impact on plant mating systems. Frontiers in Plant Science 15, 1359037. https://doi.org/10.3389/fpls.2024.1359037
DeLuca T.H., Zackrisson O., 2007. Enhanced soil fertility under Juniperus communis in arctic ecosystems. Plant Soil 294, 147–155. https://doi.org/10.1007/s11104-007-9242-4
Dumroese R. K., Balachowski J. A., Flores D., Horning M. E., 2022. Reforestation to mitigate changes to climate: More than just planting seedlings, w: XV World Forestry Congress: Building a green, healthy, and resilient future with forests. Food and Agriculture Organization of the United Nations; Korean Forest Service, Seoul, Republic of Korea, 7.
Dusenge M.E., Duarte A.G., Way D.A., 2019. Plant carbon metabolism and climate change: Elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytologist 221, 32–49. https://doi.org/10.1111/nph.15283
Fartmann T., Drung M., Henning O., Löffler F., Brüggeshemke J., 2022. Breeding-bird assemblages of calcareous grasslands and heathlands provide evidence for Common juniper (Juniperus communis) as a keystone species. Global Ecology and Conservation 40, e02315. https://doi.org/10.1016/j.gecco.2022.e02315
Flanagan S.P., Forester B.R., Latch E.K., Aitken S.N., Hoban S., 2018. Guidelines for planning genomic assessment and monitoring of locally adaptive variation to inform species conservation. Evolutionary Applications 11, 1035–1052. https://doi.org/10.1111/eva.12569
Fréjaville T., Vizcaíno-Palomar N., Fady B., Kremer A., Benito Garzón M., 2020. Range margin populations show high climate adaptation lags in European trees. Global Change Biology 26, 484–495. https://doi.org/10.1111/gcb.14881
García D., 2001. Effects of seed dispersal on Juniperus communis recruitment on a Mediterranean mountain. Journal of Vegetation Science 12, 839–848. https://doi.org/10.2307/3236872
García D., Zamora R., Gómez J.M., Jordano P., Hódar J.A., 2000. Geographical variation in seed production, predation and abortion in Juniperus communis throughout its range in Europe. Journal of Ecology 88, 435–446. https://doi.org/10.1046/j.1365-2745.2000.00459.x
Główny Inspektorat Ochrony Środowiska, 2012. Zarośla jałowca pospolitego w murawach nawapiennych lub na wrzosowiskach: Metodyka monitoringu. Warszawa: GIOŚ.
Gruwez R., Leroux O., Frenne P., Tack W., Viane R., i in., 2012. Critical phases in the seed development of common juniper (Juniperus communis). Plant Biology 15. https://doi.org/10.1111/j.1438-8677.2012.00628.x
Gruwez R., De Frenne P., De Schrijver A., Leroux O., Vangansbeke P., i in., 2014. Negative effects of temperature and atmospheric depositions on the seed viability of common juniper (Juniperus communis). Annals of Botany 113(3), 489–500. https://doi.org/10.1093/aob/mct272
Gruwez R., De Frenne P., De Schrijver A., i in., 2017. Climate warming and atmospheric deposition affect seed viability of common juniper (Juniperus communis) via their impact on the nutrient status of the plant. Ecological Research 32, 135–144. https://doi.org/10.1007/s11284-016-1422-3
Hasegawa T., Fujimori S., Ito A., Takahashi K., 2024. Careful selection of forest types in afforestation can increase carbon sequestration by 25% without compromising sustainability. Communications Earth & Environment 5. https://doi.org/10.1038/s43247-024-01336-4
Heilbuth J. C., Ilves K. L., Otto S. P., 2001. The consequences of dioecy for seed dispersal: modeling the seed-shadow handicap. Evolution 55(5), 880–888. https://doi.org/10.1554/0014-3820(2001)055[0880:tcodfs]2.0.co;2. PMID: 11430648
Hisano M., Searle E. B., Chen H. Y., 2018. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biological Reviews 93(1), 439–456. https://doi.org/10.1111/brv.12351
Hillebrand H., Blasius B., Borer E. T., i in., 2018. Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring. Journal of Applied Ecology 55, 169–184. https://doi.org/10.1111/1365-2664.12959
Husband B. C., Schemske D. W., 1996. Evolution of the magnitude and timing of inbreeding depression in plants. Evolution 50, 54–70. https://doi.org/10.1111/j.1558-5646.1996.tb04472.x
IPCC, 2000. Land use, land-use change, and forestry – summary for policymakers. W: Watson R. T., Noble I. R., Bolin B., Ravindranath N. H., Verardo D. J., Dokken D. J. (Red.), IPCC Special Reports. Cambridge University Press, UK, 6–22.
IPCC, 2023. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team: H. Lee, J. Romero (red.). IPCC, Geneva, Switzerland, 35–115. doi:10.59327/IPCC/AR6-9789291691647
Iszkuło G., Jasińska A. K., Giertych M. J., Boratyński A., 2009. Do secondary sexual dimorphism and female intolerance to drought influence the sex ratio and extinction risk of Taxus baccata? Plant Ecology 200, 229-240. https://doi.org/10.1007/S11258-008-9447-5
Iszkuło G., Boratyński A., 2011. Initial period of sexual maturity determines the greater growth rate of male over female in dioecious tree Juniperus communis subsp. communis. Acta Oecologica 37, 99–102. https://doi.org/10.1016/j.actao.2011.01.001
IUCN, 2025. The IUCN Red List of Threatened Species (Version 2025-1). https://www.iucnredlist.org
Jacquemart A.-L., Buyens C., Delescaille L.-M., Van Rossum F., 2021. Using genetic evaluation to guide conservation of remnant Juniperus communis (Cupressaceae) populations. Plant Biology Journal 23, 193-204. https://doi.org/10.1111/plb.13188
Khantemirova E. V., Semerikov V. L., 2010. Genetic variation of some varieties of common juniper Juniperus communis L. inferred from analysis of allozyme loci. Genetika 46(5), 622–630. PMID: 20583597. https://doi.org/10.1134/S1022795410050066.
Keenan T. F., Luo X., Stocker B. D., i in., 2023. A constraint on historic growth in global photosynthesis due to rising CO2. Nature Climate Change 13, 1376–1381. https://doi.org/10.1038/s41558-023-01867-2
Kijowska-Oberc J., Staszak A. M., Kamiński J., Ratajczak E., 2020. Adaptation of forest trees to rapidly changing climate. Forests 11(2), 123. https://doi.org/10.3390/f11020123
Klobučník M., Kormuťák A., Jurčík J., i in., 2025. Conservation genetic evaluation of Juniperus communis sensu lato in Slovakia. Scientific Reports 15, 8398. https://doi.org/10.1038/s41598-025-92792-1
Knyazeva S. G., Hantemirova E. V., 2020. Comparative analysis of genetic and morpho-anatomical variability of common juniper (Juniperus communis L.). Russian Journal of Genetics 56, 48–58. https://doi.org/10.1134/S102279542001007X
Kremer A., Chen J., Lascoux M., 2025. ‘Chimes of resilience’: what makes forest trees genetically resilient? New Phytologist 246, 1934–1951. https://doi.org/10.1111/nph.70108
Lindner M., Maroschek M., Netherer S., i in., 2010. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management 259(4), 698–709. https://doi.org/10.1016/j.foreco.2009.09.023
Locatelli B., Catterall C. P., Imbach P., i in., 2015. Tropical reforestation and climate change: beyond carbon. Restoration Ecology 23(4), 337–343. https://doi.org/10.1111/rec.12209
Majewska E., Kozłowska M., Kowalska D., Gruczyńska E., 2017. Characterization of the essential oil from cone-berries of Juniperus communis L. (Cupressaceae). Herba Polonica 63. https://doi.org/10.1515/hepo-2017-0018
Matuszkiewicz W., 2008. Przewodnik do oznaczania zbiorowisk roślinnych Polski. Warszawa: PWN.
Medvedeva M. V., Raevsky B. V., 2025. The influence of juniper on the soil properties of pine stands in the taiga zone of the European North. Forests 16(2), 365. https://doi.org/10.3390/f16020365
Merwe M. V. D., Winfield M. O., Arnold G. M., Parker J. S., 2000. Spatial and temporal aspects of the genetic structure of Juniperus communis populations. Molecular Ecology 9, 379–386. https://doi.org/10.1046/j.1365-294x.2000.00868.x
Michalczyk I. M., Opgenoorth L., Luecke Y., Huck S., Ziegenhagen B., 2010. Genetic support for perglacial survival of Juniperus communis L. in Central Europe. The Holocene 20(6), 887–894. https://doi.org/10.1177/0959683610365943
Neaves L. E., Eales J., Whitlock R., i in., 2015. The fitness consequences of inbreeding in natural populations and their implications for species conservation – a systematic map. Environmental Evidence 4(1), 1. https://doi.org/10.1186/s13750-015-0031-x
Nicotra A. B., Atkin O. K., Bonser S. P., i in., 2010. Plant phenotypic plasticity in a changing climate. Trends in Plant Science 15(12), 684–692. https://doi.org/10.1016/j.tplants.2010.09.008
Nuñez C. I., Nuñez M. A., Kitzberger T. 2008. Sex-related spatial segregation and growth in a dioecious conifer along environmental gradients in northwestern Patagonia. Ecoscience 15(1), 73–80. https://doi.org/10.1111/j.1442-1984.2007.00171.x
Ociepa A., Zwijacz-Kozica T., 2021. Protection of Juniperus communis L. formations on calcareous grasslands in the Tatra National Park as an example of inconsistency in the objectives of national park and the Natura 2000, w: Chrobak M., Rączkowska Z., Szwagrzyk J., Zwijacz-Kozica T. (Red.), Zmiany w Tatrach – zagrożenia istniejące i potencjalne. VI Konferencja "Przyroda Tatrzańskiego Parku Narodowego a Człowiek". Zeszyt abstraktów (24). Tatrzański Park Narodowy, Zakopane 2021. https://doi.org/10.24917/9788380847057.13
Oldén A., Komonen A., Tervonen K., Halme P., 2017. Grazing and abandonment determine different tree dynamics in wood-pastures. Ambio 46(2), 227–236.
Opdam P., & Wascher D., 2004. Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biological conservation 117(3), 285-297.
Ortiz P. L., Arista M., Talavera S., 2002. Sex ratio and reproductive effort in the dioecious Juniperus communis subsp. alpina (Suter) Celak. (Cupressaceae) along an altitudinal gradient. Annals of Botany 89(2), 205–211. https://doi.org/10.1093/aob/mcf028. PMID: 12099351; PMCID: PMC4233793.
Pan Y., Birdsey R. A., Phillips O. L., i in., 2024. The enduring world forest carbon sink. Nature 631, 563–569. https://doi.org/10.1038/s41586-024-07602-x
Peng C., Ma Z., Lei X., i in., 2011. A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nature Climate Change 1, 467–471. https://doi.org/10.1038/nclimate1293.
Pigozzi, G,. 1991. The diet of the European badger in a Mediterranean coastal area. Acta Theriologica 36(3–4), 293–306.
Rada Wspólnot Europejskich, 1992. Dyrektywa Rady 92/43/EWG z dnia 21 maja 1992 r. w sprawie ochrony siedlisk przyrodniczych oraz dzikiej fauny i flory. Dz. Urz. UE L 206 z 22.07.1992. Dostęp: 7 lipca 2025.
Radoukova T., Semerdjieva I., Zheljazkov V. D., 2024. A comparative morphological and anatomical study of Juniperus communis L., J. sibirica Burgsd., and J. pygmaea K. Koch from Bulgaria. Plants 13(17), 2419. https://doi.org/10.3390/plants13172419
Rahmonov O., Rahmonov M., Opała-Owczarek M., i in., 2017. Ecological and cultural importance of juniper ecosystem in the area of Zeravshan valley (Tajikistan) on the background of environmental condition and anthropogenic hazards. Geographia Polonica 90, 441-461. https://doi.org/10.7163/GPol.0110
Reim S., Lochschmidt F., Proft A., Tröber U., Wolf H., 2016. Genetic structure and diversity in Juniperus communis populations in Saxony, Germany. Biodiversity: Research and Conservation 42, 9–18. https://doi.org/10.1515/biorc-2016-0008
Renner S. S., 2014. The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. American Journal of Botany 101(10), 1588–1596. https://doi.org/10.3732/ajb.1400196. PMID: 25326608
Rostamikia Y., Matinizadeh M., Anbaran S. M., 2024. Influence of scattered Greek juniper trees on soil properties in semi-arid woodlands in the northwest of Iran. Journal of Forest Science 70(11), 560–573. https://doi.org/10.17221/60/2024-JFS
Samojlik T., Fedotova A., Kuijper D. P., 2016. Transition from traditional to modern forest management shaped the spatial extent of cattle pasturing in Białowieża Primeval Forest in the nineteenth and twentieth centuries. Ambio 45(8), 904–918
Senf C., Seidl R., 2021. Post-disturbance canopy recovery and the resilience of Europe’s forests. Global Ecology and Biogeography 31, 25–36. https://doi.org/10.1111/geb.13406
Sękiewicz K., Sós J., Walas Ł., Dering M., 2025. High genetic connectivity of common juniper in Scandinavia: implication for management of genetic resources. Forest Ecology and Management 585, 122. https://doi.org/10.1016/j.foreco.2025.122604
Surso M., 2018. Pollination and pollen germination in common juniper (Juniperus communis: Cupressaceae). Arct. Environ. Res. 18, 162–174. https://doi.org/10.3897/issn2541-8416.2018.18.4.162
Teixeira S., Foerster K., Bernasconi G., 2009. Evidence for inbreeding depression and post-pollination selection against inbreeding in the dioecious plant Silene latifolia. Heredity 102(2), 101–112. https://doi.org/10.1038/hdy.2008.86
Thomas P., El-barghati M., Polwart A., 2007. Biological Flora of the British Isles: Juniperus communis L. J. Ecol. 95(6), 1404–1440. https://doi.org/10.1111/j.1365-2745.2007.01308.x.
Tong X., Brandt M., Yue Y., Ciais P., Rudbeck Jepsen M., i in., 2020. Forest management in southern China generates short term extensive carbon sequestration. Nat. Commun. 11, 129. https://doi.org/10.1038/s41467-019-13798-8
Tsuchimatsu T., Fujii S., 2022. The selfing syndrome and beyond: diverse evolutionary consequences of mating system transitions in plants. Philos. Trans. R. Soc. B 377(1855), 20200510. https://doi.org/10.1098/rstb.2020.0510
van der Velde I.R., van der Werf G.R., Houweling S., Maasakkers J.D., Borsdorff T., i in., 2021. Vast CO2 release from Australian fires in 2019–2020 constrained by satellite. Nature 597(7876), 366–369. https://doi.org/10.1038/s41586-021-03712-y
Vanden-Broeck A., Gruwez R., Cox K., Adriaenssens S., Michalczyk I.M., i in., 2011. Genetic structure and seed-mediated dispersal rates of an endangered shrub in a fragmented landscape: a case study for Juniperus communis in northwestern Europe. BMC Genet. 12, 73. https://doi.org/10.1186/1471-2156-12-73
Veldhuis E.R., Verheyen K., Smolders A.J.P., i in., 2025. How nitrogen deposition hampers common juniper regeneration in heathlands. Plant Soil 509, 301–313. https://doi.org/10.1007/s11104-024-06857-7
Verheyen K., Baeten L., Van den Berge H., Honnay O., 2009. Juniperus communis: victim of the combined action of climate warming and nitrogen deposition? Plant Biol. 11(1), 49–59. https://doi.org/10.1111/j.1438-8677.2009.00214.x
Ward L.K., 2007. Lifetime sexual dimorphism in Juniperus communis var. communis. Plant Species Biol. 22, 11–21. https://doi.org/10.1111/j.1442-1984.2007.00171.x
Pobrania
Opublikowane
Numer
Dział
Licencja
Prawa autorskie (c) 2025 KOSMOS

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.
Statystyki
Liczba wyświetleń i pobrań: 33
Liczba cytowań: 0