Plant nanocellulose – the eco-friendly polymer of our future?
DOI:
https://doi.org/10.12775/KOSMOS.2025.023%20Keywords
bio-based polymers, biomedical applications, energy storage materials, environmental remediation, nanotechnology, plant nanocelluloseAbstract
The article focuses on plant nanocellulose as a promising green material for the future. It presents the properties, extraction methods and applications of various types of nanocellulose. The article highlights the renewability, biodegradability and low environmental impact of these materials. It also discusses the sources of raw materials, extraction techniques, and the potential for chemical modification to adapt nanocellulose for use in medicine, materials engineering, energy production, the food industry, and environmental remediation. Particular attention is given to its use in medicine, for example in dressings and tissue scaffolds, and in energy storage technology, for instance in supercapacitors and PCM materials. Finally, the article examines the regulatory aspects, technological challenges and economic considerations of implementing nanocellulose on an industrial scale, emphasizing its strategic importance for a circular economy and sustainable development.
References
Ahmed, M.K., Khalifa, A.J.N., 2024. Improving the Thermal Properties of Phase Change Materials Using Different Types of Additives: A Review. Library Progress International, 44(2s), 1475–1499. ISSN 0970 1052.
Ahmed, S., Islam, M.S., Antu, U.B., Islam, M.M., Rajput, V.D., i in., 2024. Nanocellulose: A novel pathway to sustainable agriculture, environmental protection, and circular bioeconomy. International Journal of Biological Macromolecules, 137979. https://doi.org/10.1016/j.ijbiomac.2024.137979
Akhter, F., Pinjaro, M.A., Ahmed, J., Ahmed, M., Arain, H. J., i in., 2025. Recent advances and synthesis approaches for enhanced heavy metal adsorption from wastewater by silica-based and nanocellulose-based 3D structured aerogels: a state of the art review with adsorption mechanisms and prospects. Biomass Conversion and Biorefinery, 15(5), 6585–6614. https://doi.org/10.1007/s13399-024-05469-6
Alić, J., Schlegel, M.C., Emmerling, F., Stolar, T., 2024. Meeting the UN sustainable development goals with mechanochemistry. Angewandte Chemie International Edition, 63(50), e202414745. https://doi.org/10.1002/anie.202414745
Al‐Zu'bi, M., Fan, M., 2025. Nanocellulose Technologies: Production, Functionalization, and Applications in Medicine and Pharmaceuticals ‐ A Review Journal of Biomedical Materials Research Part B: Applied Biomaterials, 113(5), e35585. https://doi.org/10.1002/jbm.b.35585
Babaei-Ghazvini, A., Patel, R., Vafakish, B., Yazdi, A.F.A., Acharya, B., 2024. Nanocellulose in targeted drug delivery: A review of modifications and synergistic applications. International Journal of Biological Macromolecules, 135200. https://doi.org/10.1016/j.ijbiomac.2024.135200
Bai, L., Huan, S., Zhu, Y., Chu, G., McClements, D.J., Rojas, O.J., 2021. Recent Advances in Food Emulsions and Engineering Foodstuffs Using Plant-Based Nanocelluloses. Annual Review of Food Science and Technology, 12, 383–406. https://doi.org/10.1146/annurev-food-061920-123242
Chin, K.M., Sung Ting, S., Ong, H.L., Omar, M., 2018. Surface functionalized nanocellulose as a veritable inclusionary material in contemporary bioinspired applications: A review. Journal of Applied Polymer Science, 135(13), 46065. https://doi.org/10.1002/app.46065
Čolić, M., Tomić, S., Bekić, M., 2020. Immunological aspects of nanocellulose. Immunology Letters, 222, 80–89. https://doi.org/10.1016/j.imlet.2020.04.004
da Silva, R.N.A., de Macedo Neto, J.C., Kimura, S.P.R., 2022. Natural fiber for reinforcement in matrix polymeric. Independent Journal of Management Production, 13(1), 154–167. https://doi.org/10.14807/ijmp.v13i1.1475
Das, R., Lindström, T., Khan, M., Rezaei, M., Hsiao, B.S., 2023. Nanocellulose preparation from diverse plant feedstocks, processes, and chemical treatments: A review emphasizing non-woods. BioResources, 19(1). https://doi.org/10.15376/biores.19.1.das
de Amorim, J.D.P., de Souza, K.C., Duarte, C.R., da Silva Duarte, I., de Assis Sales Ribeiro, i in., 2020. Plant and bacterial nanocellulose: production, properties and applications in medicine, food, cosmetics, electronics and engineering. A review. Environmental Chemistry Letters, 18, 851–869. https://doi.org/10.1007/s10311-020-00989-9
Ferreira, F.V., Pinheiro, I.F., de Souza, S.F., Mei, L.H., Lona, L.M., 2019. Polymer composites reinforced with natural fibers and nanocellulose in the automotive industry: A short review. Journal of Composites Science, 3(2), 51. https://doi.org/10.3390/jcs3020051
Frank, B.P., Smith, C., Caudill, E.R., Lankone, R.S., Carlin, K., i in., 2021. Biodegradation of functionalized nanocellulose. Environmental Science Technology, 55(15), 10744–10757. https://doi.org/10.1021/acs.est.0c07253
Gan, P.G., Sam, S.T., Abdullah, M.F.B., Omar, M.F., 2019. Thermal properties of nanocellulose‐reinforced composites: A review. Journal of Applied Polymer Science, 137(11), 48544. https://doi.org/10.1002/app.48544
Gao, W., Tu, Q., Wang, P., Zeng, J., Li, J., i in., 2024. Conductive polymer/nanocellulose composites as a functional platform for electronic devices: A mini-review. Polymer Reviews, 64(1), 162–191. https://doi.org/10.1080/15583724.2023.2220018
Goncalves, J., El-Bakkari, M., Boluk, Y., Bindiganavile, V., 2019. Cellulose nanofibres (CNF) for sulphate resistance in cement based systems. Cement and Concrete Composites, 99, 100–111. https://doi.org/10.1016/j.cemconcomp.2019.03.005
Gopinath, K.P., Rajagopal, M., Krishnan, A., Sreerama, S.K., 2021. A review on recent trends in nanomaterials and nanocomposites for environmental applications. Curr Anal Chem, 17(2), 202–243. https://doi.org/10.2174/1573411016666200102112728
Han, S., Li, J., Zang, J., Ding, Q., Yu, Z., Lu, Y., 2025. Effects of cellulose nanofibrils on the mechanical and thermal properties of phase change foams based on polyethylene glycol/cellulose nanofibrils/waterborne polyurethane. International Journal of Biological Macromolecules, 287, 138655. https://doi.org/10.1016/j.ijbiomac.2024.138655
He, R., Xie, C., Chen, Y., Guo, Z. X., Guo, B., Tuo, X., 2022. Robust and highly resilient waterborne polyurethane-based composite aerogels prepared by blending with aramid nanofibers. Current Analytical Chemistry, 228, 109622, https://doi.org/ 10.1016/j.compscitech.2022.109622. https://doi.org/10.1016/j.compscitech.2022.109622
Hernandez Perez, R., Olarte Paredes, A., Salgado Delgado, R., Salgado Delgado, A.M., 2023. Rice husk Var.‘Morelos A-2010’as an eco-friendly alternative for the waste management converting them cellulose and nanocellulose. International Journal of Environmental Analytical Chemistry, 103(19), 7571–7586. https://doi.org/10.1080/03067319.2021.1972991
Hutten, I.M., 2016. Standards for Nonwoven Filter Media. Handbook of Nonwoven Filter Media, 563–588. https://doi.org/10.1016/b978-0-08-098301-1.00011-3
Islam, M.T., Alam, M.M., Patrucco, A., Montarsolo, A., Zoccola, M., 2014. Preparation of nanocellulose: A review. AATCC Journal of Research, 1(5), 17–23. https://doi.org/10.14504/ajr.1.5.3
James, A., Rahman, M.R., Mohamad Said, K.A., Kanakaraju, D., Sueraya, A.Z., i in., 2024. A review of nanocellulose modification and compatibility barrier for various applications. Journal of Thermoplastic Composite Materials, 37(6), 2149–2199. https://doi.org/10.1177/08927057231205451
Kim, H., Dutta, S.D., Randhawa, A., Patil, T.V., Ganguly, K., i in., 2024. Recent advances and biomedical application of 3D printed nanocellulose-based adhesive hydrogels: A review. International Journal of Biological Macromolecules, 130732. https://doi.org/10.1016/j.ijbiomac.2024.130732
Kumar, S., Ngasainao, M.R., Sharma, D., Sengar, M., Gahlot, A.P.S., i in., 2022. Contemporary nanocellulose-composites: A new paradigm for sensing applications. Carbohydrate Polymers, 298, 120052. https://doi.org/10.1016/j.carbpol.2022.120052
Kupnik, K., Primožič, M., Kokol, V., Leitgeb, M., 2020. Nanocellulose in drug delivery and antimicrobially active materials. Polymers (Basel), 12(12), 2825. https://doi.org/10.3390/polym12122825
Li, J., Wu, R., Wang, W.J., Lim, K.H., Yang, X., 2025a. Papers with high filler contents enabled by nanocelluloses as retention and strengthening agents. Carbohydrate Polymers, 358, 123506. https://doi.org/10.1016/j.carbpol.2025.123506
Li, L., Su, Y., Klein, F., Garemark, J., Li, Z., i in., 2025b. Synchronized ultrasonography and electromyography signals detection enabled by nanocellulose based ultrasound transparent electrodes. Carbohydrate Polymers, 347, 122641. https://doi.org/10.1016/j.carbpol.2024.122641
Li, L., Zhong, D., Wang, S., Zhou, M., 2025c. Plant-derived materials for biomedical applications. Nanoscale, 17(2), 722–739. https://doi.org/10.1039/d4nr03057e
Liu, C., Wang, H., Lei, T., He, Y., Zhu, F., i in., 2025. Design of boron nitride/nanocellulose aerogel-stabilized phase change materials for efficient thermal energy capture and storage. International Journal of Biological Macromolecules, 295, 139572. https://doi.org/10.1016/j.ijbiomac.2025.139572
Liu, H., Du, H., Zheng, T., Liu, K., Ji, X., i in., 2021. Cellulose based composite foams and aerogels for advanced energy storage devices. Chemical Engineering Journal, 426, 130817. https://doi.org/10.1016/j.cej.2021.130817
Liu, H., Xu, T., Cai, C., Liu, K., Liu, W., i in., 2022. Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose‐based composite carbon aerogels for compressive supercapacitor and strain sensor. Advanced Functional Materials, 32(26), 2113082. https://doi.org/10.1002/adfm.202113082
Liu, L., Zheng, K., Yan, Y., Cai, Z., Lin, S., i in., 2018. Graphene Aerogels Enhanced Phase Change Materials prepared by one-pot method with high thermal conductivity and large latent energy storage. Solar Energy Materials and Solar Cells, 185, 487–493. https://doi.org/10.1016/j.solmat.2018.06.005
Lv, Q., Ma, X., Zhang, C., Han, J., He, S., i in., 2024a. Nanocellulose-based nanogenerators for sensor applications: A review. International Journal of Biological Macromolecules, 259, 129268. https://doi.org/10.1016/j.ijbiomac.2024.129268
Lv, X., Huang, Y., Hu, M., Wang, Y., Dai, D., i in., 2024b. Recent advances in nanocellulose based hydrogels: Preparation strategy, typical properties and food application. International Journal of Biological Macromolecules, 134015. https://doi.org/10.1016/j.ijbiomac.2024.134015
Maitra, M., Adari, R., Radha, P., 2025. Sustainable packaging films: polylactic acid-surface-modified nanocellulose-pectin biocomposite to extend shelf life of strawberry fruit. Journal of Food Science and Technology, 1–15. https://doi.org/10.1007/s13197-024-06195-7
Mishra, P.K., Pavelek, O., Rasticova, M., Mishra, H., Ekielski, A., 2022. Nanocellulose-based biomedical scaffolds in future bioeconomy: a techno-legal assessment of the state-of-the-art. Frontiers in Bioengineering and Biotechnology, 9, 789603. https://doi.org/10.3389/fbioe.2021.789603
Nishiguchi, A., Taguchi, T., 2019. Osteoclast-responsive, injectable bone of bisphosphonated-nanocellulose that regulates osteoclast/osteoblast activity for bone regeneration. Biomacromolecules, 20(3), 1385–1393. https://doi.org/10.1021/acs.biomac.8b01767
Nishiguchi, A., Taguchi, T., 2020. Designing an anti-inflammatory and tissue-adhesive colloidal dressing for wound treatment. Colloids and Surfaces B: Biointerfaces, 188, 110737. https://doi.org/10.1016/j.colsurfb.2019.110737
Norizan, M.N., Shazleen, S.S., Alias, A.H., Sabaruddin, F.A., Asyraf, M.R.M., i in., 2022. Nanocellulose-based nanocomposites for sustainable applications: a review. Nanomaterials (Basel), 12(19), 3483. https://doi.org/10.3390/nano12193483
Olędzki, R., Walaszczyk, E., 2020. Bionanocellulose-properties, acquisition and perspectives of application in the food industry/ Bionanoceluloza-własciwości, pozyskiwanie i perspektywy zastosowania w przemyśle spożywczym. Advancements of Microbiology, 59(1), 87–103. https://doi.org/10.21307/pm-2020.59.1.008
Pacaphol, K., Aht-Ong, D., 2017. The influences of silanes on interfacial adhesion and surface properties of nanocellulose film coating on glass and aluminum substrates. Surface and Coatings Technology, 320, 70–81. https://doi.org/10.1016/j.surfcoat.2017.01.111
Perdani, C.G., Gunawan, S., 2021. A short review: Nanocellulose for smart biodegradable packaging in the food industry. IOP Conference Series: Earth and Environmental Science, 924, 012032. https://doi.org/10.1088/1755-1315/924/1/012032
Poulose, A., Parameswaranpillai, J., George, J.J., Gopi, J.A., Krishnasamy, S., i in., 2022. Nanocellulose: a fundamental material for science and technology applications. Molecules, 27(22), 8032. https://doi.org/10.3390/molecules27228032
Prabsangob, N., 2023. Plant-based cellulose nanomaterials for food products with lowered energy uptake and improved nutritional value. NFS Journal, 31, 39–49. https://doi.org/10.1016/j.nfs.2023.03.002
Qin, Z., Ng, W., Ede, J., Shatkin, J.A., Feng, J., i in., 2024. Nanocellulose and its modified forms in the food industry: Applications, safety, and regulatory perspectives. Comprehensive Reviews in Food Science and Food Safety, 23, e70049. https://doi.org/10.1111/1541-4337.70049
Rajinipriya, M., Nagalakshmaiah, M., Robert, M., Elkoun, S., 2018. Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review. ACS Sustainable Chemical Engineering, 6(3), 2807–2828. https://doi.org/10.1021/acssuschemeng.7b03437
Santos, M.V., Pugina, R.S., Fontes, M.L., Onishi, B.S. D., Torres, F.R., i in., 2025. Nanocellulose-based materials for photonic applications. Optical Materials Express, 15(5), 977–1004. https://doi.org/10.1364/ome.548069
Shah, M., Hakim, N.U.D., 2025. Advances in nanocellulose proton conductivity and applications in polymer electrolyte membrane fuel cells. Next Materials, 6, 100484. https://doi.org/10.1016/j.nxmate.2025.100484
Sharma, T., Manik, G., 2025. Sustainable UV-resistant and anti-bacterial wood coating reinforced with cellulose nanofibers (CNF) and titanium dioxide nanoparticles: Synthesis, characterization and properties. International Journal of Biological Macromolecules, 140533. https://doi.org/10.1016/j.ijbiomac.2025.140533
Sheraz, M., Sun, X.F., Siddiqui, A., Wang, Y., Hu, S., i in., 2025. Cellulose-Based Electrochemical Sensors (Basel). Sensors (Basel), 25(3), 645. https://doi.org/10.3390/s25030645
Snopek, K., Broda, M., Żywicka, A., 2024. Celuloza bakteryjna – nanobiomateriał przyszłości. Kosmos (Wars), 73(3), 297–316. https://doi.org/10.36921/kos.2024_3034
Solecka, D., 2015. Ściana komórki roślinnej – struktura z przyszłością. Kosmos (Wars), 64(3), 415–429.
Somerville, C., Bauer, S., Brininstool, G., Facette, M., Hamann, T., i in., 2004. Toward a systems approach to understanding plant cell walls. Science, 306(5705), 2206–2211. https://doi.org/10.1126/science.1102765
Subhedar, A., Bhadauria, S., Ahankari, S., Kargarzadeh, H., 2021. Nanocellulose in biomedical and biosensing applications: A review. International Journal of Biological Macromolecules, 166, 587–600. https://doi.org/10.1016/j.ijbiomac.2020.10.217
Szustak, M., Gendaszewska-Darmach, E., 2021. Nanocellulose-based scaffolds for chondrogenic differentiation and expansion. Frontiers in Bioengineering and Biotechnology, 9, 736213. https://doi.org/10.3389/fbioe.2021.736213
Tang, J., Bao, L., Li, X., Chen, L., Hong, F.F., 2015. Potential of PVA-doped bacterial nano-cellulose tubular composites for artificial blood vessels. Journal of Materials Chemistry B, 3(43), 8537–8547. https://doi.org/10.1039/c5tb01144b
Thomas, B., Raj, M.C., Joy, J., Moores, A., Drisko, G.L., Sanchez, C., 2018. Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chemical Reviews, 118(24), 11575–11625. https://doi.org/10.1021/acs.chemrev.7b00627
Vilarinho, F., Sanches Silva, A., Vaz, M.F., Farinha, J.P., 2018. Nanocellulose in green food packaging. Critical Reviews in Food Science and Nutrition, 58(9), 1526–1537. https://doi.org/10.1080/10408398.2016.1270254
Wang, D., Peng, H., Wu, Y., Zhang, L., Li, M., i in., 2020. Bioinspired lamellar barriers for significantly improving the flame-retardant properties of nanocellulose composites. ACS Sustainable Chemistry Engineering, 8 (11), 4331–4336. https://doi.org/10.1021/acssuschemeng.9b07745
Yahya, M., Chen, Y. W., Lee, H.V., Hassan, W.H. W., 2018. Reuse of selected lignocellulosic and processed biomasses as sustainable sources for the fabrication of nanocellulose via Ni (II)-catalyzed hydrolysis approach: a comparative study. Journal of Polymers and the Environment, 26, 2825–2844. https://doi.org/10.1007/s10924-017-1167-2
Yang, C., Zhu, Y., Tian, Z., Zhang, C., Han, X., i in., 2024a. Preparation of nanocellulose and its applications in wound dressing: A review. International Journal of Biological Macromolecules, 254, 127997. https://doi.org/10.1016/j.ijbiomac.2023.127997
Yang, Y., Dang, B., Wang, C., Chen, Y., Chen, K., i in., 2024b. Ultrastrong lightweight nanocellulose-based composite aerogels with robust superhydrophobicity and durable thermal insulation under extremely environment. Carbohydrate Polymers, 323, 121392. https://doi.org/10.1016/j.carbpol.2023.121392
Yang, Y., Li, X., Wan, C., Zhang, Z., Cao, W., i in., 2024c. A comprehensive review of cellulose nanomaterials for adsorption of wastewater pollutants: focus on dye and heavy metal Cr adsorption and oil/water separation. Collagen and Leather, 6(1), 35. https://doi.org/10.1186/s42825-024-00179-1
Zhang, E., Ma, C., Wang, T., Mu, L., Yang, Y., Chen, G., 2025a. Anisotropic nanocellulose-based aerogels for radiative cooling. International Journal of Biological Macromolecules, 295, 139580. https://doi.org/10.1016/j.ijbiomac.2025.139580
Zhang, Y., Wu, Y., Liu, Z., Zhang, Q., Lu, J., i in., 2025b. Preparation and properties of waterborne polyurethane/nanocellulose/sepiolite composite aerogel for sound absorption and heat insulation. International Journal of Biological Macromolecules, 298, 140015. https://doi.org/10.1016/j.ijbiomac.2025.140015
Zhou, J., Hsieh, Y.L., 2018. Conductive polymer protonated nanocellulose aerogels for tunable and linearly responsive strain sensors. ACS applied materials interfaces, 10(33), 27902–27910. https://doi.org/10.1021/acsami.8b10239
Downloads
Published
Issue
Section
License
Copyright (c) 2026 KOSMOS

This work is licensed under a Creative Commons Attribution 4.0 International License.
Stats
Number of views and downloads: 4
Number of citations: 0