Nanomateriały kontra natura: jak rośliny i zwierzęta ewoluują, by radzić sobie z nowoczesnymi wyzwaniami
DOI:
https://doi.org/10.12775/KOSMOS.2024.007Słowa kluczowe
nanomateriały, wrodzony układ odpornościowy, interakcje, stres oksydacyjny, toksycznośćAbstrakt
Interakcje między nanomateriałami (ENMs) a wrodzonym układem odpornościowym stanowią istotny element adaptacji organizmów do zmieniającego się środowiska. Mimo ewolucyjnych różnic, mechanizmy obronne roślin i zwierząt wykazują podobieństwa w rozpoznawaniu i eliminacji obcych cząstek. Do ich rozpoznania, rośliny wykorzystują receptory odporności wrodzonej na poziomie każdej komórki, podczas gdy zwierzęta angażują wyspecjalizowane komórki immunokompetentne, takie jak np. fagocyty. Nanocząstki oddziałują z tymi systemami, indukując reakcje stresowe, w tym produkcję reaktywnych form tlenu (ROS) oraz aktywację receptorów TLR. Wpływ nanomateriałów zależy od ich właściwości fizykochemicznych, a także od gatunku organizmu i warunków środowiskowych. Zrozumienie tych interakcji ma kluczowe znaczenie dla oceny potencjalnego ryzyka toksyczności oraz dla wykorzystania nanotechnologii w biomedycynie i inżynierii środowiskowej. Celem niniejszej pracy jest przegląd aktualnej wiedzy na temat tych interakcji oraz wskazanie kierunków dalszych badań.
Bibliografia
Adamowicz A., 2005. Morphology and ultrastructure of the earthworm Dendrobaena veneta (Lumbricidae) coelomocytes. Tissue Cell 37(2): 125–133. Doi: https://doi.org/10.1016/j.tice.2004.11.002.
Ali S., Mehmood A., Khan N., i współaut., 2021. Uptake, translocation, and consequences of nanomaterials on plant growth and stress adaptation. J Nanomater 6677616. Doi: https://doi.org/10.1155/2021/6677616.
Alijagic A., Barbero F., Gaglio D., Napodano E., Benada O., i współaut., 2021a. Gold nanoparticles coated with polyvinylpyrrolidone and sea urchin extracellular molecules induce transient immune activation. J Hazard Mater 5;402: 123793. Doi: https://doi.org/10.1016/j.jhazmat.2020.123793.
Alijagic A., Bonura A., Barbero F., Puntes V. F., Gervasi F., i współaut., 2021b. Immunomodulatory Function of Polyvinylpyrrolidone (PVP)-Functionalized Gold Nanoparticles in Vibrio-Stimulated Sea Urchin Immune Cells. Nanomaterials (Basel) 8;11(10):2646. Doi: https://doi.org/10.3390/nano11102646.
Alijagic A., Gaglio D., Napodano E., Russo R., Costa C., i współaut., 2020. Titanium dioxide nanoparticles temporarily influence the sea urchin immunological state suppressing inflammatory-relate gene transcription and boosting antioxidant metabolic activity. J Hazard Mater 15;384: 121389. Doi: https://doi.org/10.1016/j.jhazmat.2019.121389.
Andrade C., Oliveira B., Guatelli S., Martinez P., Simões B., i współaut., 2021. Characterization of Coelomic Fluid Cell Types in the Starfish Marthasterias glacialis Using a Flow Cytometry/Imaging Combined Approach. Front Immunol. 12: 641664. Doi: https://doi.org/10.3389/fimmu.2021.641664.
Arason G. J., 1996. Lectins as defence molecules in vertebrates and invertebrates. Fish Shellfish Immunol 6(4): 277–289. Doi: https://doi.org/ 10.1006/fsim.1996.0029.
Arora S., Sharma P., Kumar S., Nayan R., Khanna P. K., i współaut., 2012. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66: 303–310. Doi: https://doi.org/10.1007/s10725-011-9649-z.
Auguste M., Balbi T., Miglioli A., Alberti S., Prandi S., i współaut., 2021a. Comparison of different commercial nanopolystyrenes: behavior in exposure media, effects on immune function and early larval development in the model bivalve Mytilus galloprovincialis. Nanomaterials 11: 3291. Doi: https://doi.org/10.3390/nano11123291.
Auguste M., Mayall C., Barbero F., Hocevar M., Alberti S., i współaut., 2021b. Functional and morphological changes induced in hemocytes by selected nanoparticles. Nanomaterials 11: 470. Doi: https://doi.org/10.3390/nano11020470.
Baranska A., Shawket A., Jouve M., Baratin M., Malosse C., i współaut., (2018). Unveiling skin macrophage dynamics explains both tattoo persistence and strenuous removal. J Exp Med 215: 1115–1133. Doi: https://doi.org/10.1084/jem.20171608.
Barela Hudgell M. A., Grayfer L., Smith L. C., 2022. A flow cytometry based approach to identify distinct coelomocyte subsets of the purple sea urchin, Strongylocentrotus purpuratus. Dev Comp Immunol 130: 104352. Doi: https://doi.org/10.1016/j.dci.2022.104352.
Barmo C., Ciacci C., Canonico B., Fabbri R., Cortese K., i współaut., 2013. In vivo effects of n-TiO2 on digestive gland and immune function of the marine bivalve Mytilus galloprovincialis. Aquat Toxicol 132–133: 9–18. Doi: https://doi.org/10.1016/j.aquatox.2013.01.014.
Bayat N., Lopes V. R., Schölermann J., Jensen L. D., Cristobal S., 2015. Vascular toxicity of ultra-small TiO2 nanoparticles and single walled carbon nanotubes in vitro and in vivo. Biomaterials 63: 1–13. Doi: https://doi.org/10.1016/j.biomaterials.2015.05.044.
Bayda S., Adeel M., Tuccinardi T., Cordani M., Rizzolio F., 2019. The History of Nanoscience and Nanotechnology: From Chemical-Physical Applications to Nanomedicine. Molecules 27;25(1): 112. Doi: https://doi.org/10.3390/molecules25010112.
Bhorgin A. J., Uma K., 2014. Antimicrobial activity of earthworm powder (Lampito mauritii). Int J Curr Microbiol Appl Sci 3(1): 437–443.
Bilej M., De Baetselier P., Beschin A., 2000. Antimicrobial defense of the earthworm. Folia Microbiol 45: 283–300. Doi: https://doi.org/10.1007/BF02817549.
Bodó K., Baranzini N., Girardello R., Kokhanyuk B., Németh P., i współaut., 2020. Nanomaterials and Annelid Immunity: A Comparative Survey to Reveal the Common Stress and Defense Responses of Two Sentinel Species to Nanomaterials in the Environment. Biology 9(10): 307. Doi: https://doi.org/10.3390/biology9100307.
Boraschi D., Canesi L., Drobne D., Kemmerling B., Pinsino A., i współaut., 2023. Interaction between nanomaterials and the innate immune system across evolution. Biol Rev Camb Philos Soc 98(3): 747–774. Doi: https://doi.org/10.1111/brv.12928.
Brennan J. J., Gilmore T. D., 2018. Evolutionary origins of toll-like receptor signaling. Mol Biol Evol 35: 1576–1587. Doi: https://doi.org/10.1093/molbev/msy050.
Brun N. R., Koch B. E., Varela M., Peijnenburg W. J., Spaink H. P., i współaut., 2018. Nanoparticles induce dermal and intestinal innate immune system responses in zebrafish embryos. Environ Sci: Nano 5(4): 904–916. Doi: https://doi.org/ 10.1039/C8EN00002F.
Canesi L., Ciacci C., Fabbri R., Marcomini A., Pojana G. i współaut., 2012. Bivalve molluscs as a unique target group for nanoparticle toxicity. Mar Environ Res 76: 16–21. Doi: https://doi.org/10.1016/j.marenvres.2011.06.005.
Canesi L., Corsi I., 2016. Effects of nanomaterials on marine invertebrates. Sci Total Environ 565: 933–940. Doi: https://doi.org/10.1016/j.scitotenv.2016.01.085.
Canesi L., Gavioli M., Pruzzo C., Gallo G., 2002. Bacteria-hemocyte interactions and phagocytosis in marine bivalves. Microsc Res Tech 57: 469–476. Doi: https://doi.org/10.1002/jemt.10100.
Chumakov K., Avidan M. S., Benn C. S., Bertozzi S. M., Blatt L., i współaut., 2021. Old vaccines for new infections: exploiting innate immunity to control COVID-19 and prevent future pandemics. Proc Natl Acad Sci USA 118: e2101718118. Doi: https://doi.org/10.1073/pnas.2101718118.
Cooper E. L., Kauschke E., Cossarizza A., 2001. Annelid humoral immunity: cell lysis in earthworms. Adv Exp Med Biol 484: 169–183. Doi: https://doi.org/10.1007/978-1-4615-1291-2_15.
Cooper E. L., Roch P., 2003. Earthworm immunity: a model of immune competence: The 7th international symposium on earthworm ecology· Cardiff· Wales· 2002. Pedobiologia 47(5–6): 676–688. Doi: https://doi.org/10.1078/0031-4056-00245.
Diez-Ortiz M., Lahive E., Kille P., Powell K., Morgan A. J., i współaut., 2015. Uptake routes and toxicokinetics of silver nanoparticles and silver ions in the earthworm Lumbricus rubellus. Environ Toxicol Chem 34: 2263–2270. Doi: https://doi.org/10.1002/etc.3036.
Dvořák J., Roubalová R., Procházková P., Rossmann P., Škanta F., i współaut., 2016. Sensing microorganisms in the gut triggers the immune response in Eisenia andrei earthworms. Dev Comp Immunol 57: 67–74. Doi: https://doi.org/10.1016/j.dci.2015.12.001.
Dyachuk V. A., 2016. Hematopoiesis in Bivalvia larvae: cellular origin, differentiation of hemocytes, and neoplasia. Dev Comp Immunol 65: 253–257. Doi: https://doi.org/10.1016/j.dci.2016.07.019.
Ellis A. E., 2001. Innate host defense mechanisms of fish against viruses and bacteria. Dev Comp Immunol 25(8–9):827–39. Doi: https://doi.org/10.1016/s0145-305x(01)00038-6.
Elward K., Gasque P., 2003. "Eat me" and "don't eat me" signals govern the innate immune response and tissue repair in the CNS: emphasis on the critical role of the complement system. Mol Immunol 40(2–4): 85–94. Doi: https://doi.org/10.1016/s0161-5890(03)00109-3.
Fadeel B., Farcal L., Hardy B., Vasquez-Campos S., Hristozov D., i współaut., 2018. Advanced tools for the safety assessment of nanomaterials. Nat Nanotechnol 13: 537–543. Doi: https://doi.org/10.1038/s41565-018-0185-0.
Fairbairn E. A., Keller A. A., Mädler L., Zhou D., Pokhrel S., i współaut., 2011. Metal oxide nanomaterials in seawater: linking physicochemical characteristics with biological response in sea urchin development. J Hazard Mater 192(3): 1565–71. Doi: https://doi.org/10.1016/j.jhazmat.2011.06.080.
Fearon D. T., 1997. Seeking wisdom in innate immunity. Nature 24;388(6640): 323–4. Doi: https://doi.org/10.1038/40967.
Ferrari E., 2022. Risk assessment of gold nanoparticle in a stable Arabidopsis exposition system. PhD Thesis: University of Tübingen, Tübingen, Germany.
Ferrari E., Barbero F., Busquets-Fité M., Franz-Wachtel M., Kӧhler H.-R., i współaut., 2021. Growth-promoting gold nanoparticles decrease stress responses in Arabidopsis seedlings. Nanomaterials 11: 3161. Doi: https://doi.org/10.3390/nano11123161.
Frøystad M. K., Rode M., Berg T., Gjøen T., 1998. A role for scavenger receptors in phagocytosis of protein-coated particles in rainbow trout head kidney macrophages. Dev Comp Immunol 22(5–6): 533–49. Doi: https://doi.org/10.1016/s0145-305x(98)00032-9.
Garcia-Velasco N., Gandariasbeitia M., Irizar A., Soto, M., 2016. Uptake route and resulting toxicity of silver nanoparticles in Eisenia fetida earthworm exposed through standard OECD tests. Ecotoxicology 25: 1543–1555. Doi: https://doi.org/10.1007/s10646-016-1710-2.
Gautam A., Ray A., Mukherjee S., Das S., Pal K., i współaut., 2018. Immunotoxicity of copper nanoparticle and copper sulfate in a common Indian earthworm. Ecotoxicol Environ Saf 148: 620–631. Doi: https://doi.org/10.1016/j.ecoenv.2017.11.008.
Ghosh S., 2018. Environmental pollutants, pathogens and immune system in earthworms. Environ Sci Pollut Res Int 25(7): 6196–6208. Doi: https://doi.org/10.1007/s11356-017-1167-8.
Griffith J. W., Sokol C. L., Luster A. D., 2014. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol 32: 659–702. Doi: https://doi.org/10.1146/annurev-immunol-032713-120145.
Gust A. A., Pruitt R., Nürnberger T., 2017. Sensing danger: key to activating plant immunity. Trends Plant Sci 22: 779–791. Doi: https://doi.org/10.1016/j.tplants.2017.07.005.
Hayashi Y., Engelmann P., Foldbjerg R., Szabó M., Somogyi I., i współaut., 2012. Earthworms and humans in vitro: characterizing evolutionarily conserved stress and immune responses to silver nanoparticles. Environ Sci Technol 46(7): 4166–4173. Doi: https://doi.org/10.1021/es3000905.
Hayashi Y., Miclaus T., Engelmann P., Autrup H., Sutherland D. S., i współaut., 2016. Nanosilver pathophysiology in earthworms: Transcriptional profiling of secretory proteins and the implication for the protein corona. Nanotoxicology 10(3): 303–311. Doi: https://doi.org/10.3109/17435390.2015.1054909.
Homa J., Klimek M., Kruk J., Cocquerelle C., Vandenbulcke F., i współaut., 2010. Metal-specific effects on metallothionein gene induction and riboflavin content in coelomocytes of Allolobophora chlorotica. Ecotoxicol Environ Saf 73(8): 1937–1943. Doi: https://doi.org/10.1016/j.ecoenv.2010.07.001.
Ingram G. A., 1980. Substances involved in the natural resistance of fish to infection–a review. J Fish Biol 16(1): 23–60. Doi: https://doi.org/ 10.1111/j.1095-8649.1980.tb03685.x.
Iwanaga S., Lee B. L., 2005. Recent advances in the innate immunity of invertebrate animals. J Biochem Mol Biol 38(2): 128–150. Doi: https://doi.org/10.5483/bmbrep.2005.38.2.128.
Jia H. R., Zhu Y. X., Duan Q. Y., Chen Z., Wu F.G., 2019. Nanomaterials meet zebrafish: Toxicity evaluation and drug delivery applications. J Control Release 311–312: 301–318. Doi: https://doi.org/10.1016/j.jconrel.2019.08.022.
Jin X. K., Li W. W., Wu M. H., Guo X. N., Li S., i współaut., 2013. Immunoglobulin superfamily protein Dscam exhibited molecular diversity by alternative splicing in hemocytes of crustacean, Eriocheir sinensis. Fish Shellfish Immunol. 35(3): 900–9. Doi: https://doi.org/10.1016/j.fsi.2013.06.029.
Kauschke E., Mohrig W., Cooper E. L., 2007. Coelomic fluid proteins as basic components of innate immunity in earthworms. Eur J Soil Biol 43: S110–S115. Doi: https://doi.org/10.1016/j.ejsobi.2007.08.043.
Krug H. F., Wick P., 2011. Nanotoxicology: an interdisciplinary challenge. Angew Chem Int Ed Engl 50: 1260–1278. Doi: https://doi.org/10.1002/anie.201001037.
Kumar V., Guleria P., Kumar V., Yadav S. K., 2013. Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461–462: 462–468. Doi: https://doi.org/10.1016/j.scitotenv.2013.05.018.
Kurek A., Homa J., Kauschke E., Plytycz B., 2007. Characteristics of coelomocytes of the stubby earthworm, Allolobophora chlorotica (Sav.). Eur J Soil Biol 43: S121–S126. Doi: https://doi.org/10.1016/j.ejsobi.2007.08.051.
Lapied E., Moudilou E., Exbrayat J. M., Oughton D. H., Joner, E. J., 2010. Silver nanoparticle exposure causes apoptotic response in the earthworm Lumbricus terrestris (Oligochaeta). Nanomedicine 5: 975–984. Doi: https://doi.org/10.2217/nnm.10.58.
Li X. J., Yang L., Li D., Zhu Y. T., Wang Q., i współaut., 2018. Pathogen-Specific Binding Soluble Down Syndrome Cell Adhesion Molecule (Dscam) Regulates Phagocytosis via Membrane-Bound Dscam in Crab. Front Immunol 9:801. Doi: https://doi.org/10.3389/fimmu.2018.00801.
Liu S., Zheng S. C., Li Y. L., Li J., Liu H. P., 2020. Hemocyte-Mediated Phagocytosis in Crustaceans. Front Immunol 11:268. Doi: https://doi.org/10.3389/fimmu.2020.00268.
Magnadóttir B., 2006. Innate immunity of fish (overview). Fish Shellfish Immunol 20(2): 137–51. Doi: https://doi.org/10.1016/j.fsi.2004.09.006.
Matejko S., Pocheć E., Homa J., 2016. Dżdżownice jako źródło biologicznie aktywnych cząsteczek: właściwości przeciwnowotworowe białek dżdżownic. Kosmos 65(1 (310)).
Matzinger P., 2002. The danger model: a renewed sense of self. Science 296(5566): 301–5. Doi: https://doi.org/10.1126/science.1071059.
Mayall C., Dolar A., Jemec Kokalj A., Novak S., Razinger J., i współaut., 2021. Stressor-Dependant Changes in Immune Parameters in the Terrestrial Isopod Crustacean, Porcellio scaber: A Focus on Nanomaterials. Nanomaterials (Basel) 11(4): 934. Doi: https://doi.org/10.3390/nano11040934.
Murphy K. M., Weaver C., Berg L., 2022. Janeway’s Immunobiology, Tenth Edition. W.W. Norton & Company, New York.
Naatz H., Lin S., Li R., Jiang W., Ji Z., i współaut., 2017. Safe-by-Design CuO Nanoparticles via Fe-Doping, Cu-O Bond Length Variation, and Biological Assessment in Cells and Zebrafish Embryos. ACS Nano. 11(1): 501–515. Doi: https://doi.org/10.1021/acsnano.6b06495.
Ngou B. P. M., Ding P., Jones J. D. G., 2022. Thirty years of resistance: zig-zag through the plant immune system. Plant Cell 34: 1447–1478. Doi: https://doi.org/10.1093/plcell/koac041.
Oberdӧrster G., Oberdӧrster E. & Oberdӧrster J., 2005. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113: 823–839. Doi: https://doi.org/10.1289/ehp.7339.
Pacheco I., Buzea C., 2018. Nanoparticle uptake by plants: beneficial or detrimental?. Phytotoxicity of nanoparticles 1–61. Doi: https://doi.org/10.1007/978-3-319-76708-6_1.
Pacheco N. I. N., Roubalova R., Dvorak J., Benada O., Pinkas D., i współaut., 2021. Understanding the toxicity mechanism of CuO nanoparticles: the intracellular view of exposed earthworm cells. Environ Sci: Nano 8(9): 2464–2477. Doi: https://doi.org/10.1039/D1EN00080B.
Pinsino A., Russo R., Bonaventura R., Brunelli A., Marcomini A., i współaut., 2015. Titanium dioxide nanoparticles stimulate sea urchin immune cell phagocytic activity involving TLR/p38 MAPK-mediated signalling pathway. Sci Rep 28;5: 14492. Doi: https://doi.org/10.1038/srep14492.
Płytycz B., Homa J., Kozioł B., Rózanowska M., Morgan A. J., 2006. Riboflavin content in autofluorescent earthworm coelomocytes is species-specific. Folia Histochem Cytobiol 44(4): 275–280.
Roubalová R., Procházková P., Dvořák J., Škanta F., Bilej M., 2015. The role of earthworm defense mechanisms in ecotoxicity studies. Invertebrate Survival Journal 12(1): 203–213.
Sabo-Attwood T., Unrine J. M., Stone J. W., Murphy C. J., Ghoshroy S., i współaut., 2012. Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology 6(4): 353–60. Doi: https://doi.org/10.3109/17435390.2011.579631.
Saleeb N., Robinson B., Cavanagh J., Ross J., Munir K., i współaut., 2020. Antioxidant enzyme activity and lipid peroxidation in Aporrectodea caliginosa earthworms exposed to silver nanoparticles and silver nitrate in spiked soil. Environ Toxicol Chem 39: 1257–1266.Doi: https://doi.org/10.1002/etc.4713.
Schwab F., Zhai G., Kern M., Turner A., Schnoor J. L., i współaut., 2016. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants – critical review. Nanotoxicology 10: 257–278. Doi: https://doi.org/10.3109/17435390.2015.1048326.
Semerad J., Pacheco N. I. N., Grasserova A., Prochazkova P., Pivokonsky M., i współaut., 2020. In vitro study of the toxicity mechanisms of nanoscale zero-valent iron (nZVI) and released iron ions using earthworm cells. Nanomaterials 10:2189. Doi: https://doi.org/10.3390/nano10112189.
Sendra M., Carrasco-Braganza M. I., Yeste P. M., Vila M., Blasco J., 2020. Immunotoxicity of polystyrene nanoplastics in different hemocyte subpopulations of Mytilus galloprovincialis. Sci Rep 10: 8637. Doi: https://doi.org/10.1038/s41598-020-65596-8.
Shi W., Han Y., Guo C., Zhao X., Liu S., i współaut., 2017. Immunotoxicity of nanoparticle nTiO(2) to a commercial marine bivalve species, Tegillarca granosa. Fish Shellfish Immunol 6: 300–306. Doi: https://doi.org/10.1016/j.fsi.2017.05.036.
Siddiqi K. S., Husen A., 2016. Engineered gold nanoparticles and plant adaptation potential. Nanoscale Res Lett 11: 400. Doi: https://doi.org/10.1186/s11671-016-1607-2.
Smith L. C., Arizza V., Barela Hudgell M. A., Barone G., Bodnar A. G., i współaut., 2018. Echinodermata: the complex immune system in echinoderms. In Advances in Comparative Immunology (ed. E. L. COOPER), pp. 409–501. Springer, Cham, Switzerland.
van der Ploeg M. J., van den Berg J. H., Bhattacharjee S., de Haan L. H., Ershov D. S., i współaut., 2014. In vitro nanoparticle toxicity to rat alveolar cells and coelomocytes from the earthworm Lumbricus rubellus. Nanotoxicology 8: 28–37. Doi: https://doi.org/10.3109/17435390.2012.744857.
Zarkadis I. K., Mastellos D., Lambris J. D., 2001. Phylogenetic aspects of the complement system. Dev Comp Immunol 25(8–9): 745–62. Doi: https://doi.org/10.1016/s0145-305x(01)00034-9.
Zhou J.-M., Zhang Y., 2020. Plant immunity: danger perception and signaling. Cell 181: 978–989. Doi: https://doi.org/10.1016/j.cell.2020.04.028.
Pobrania
Opublikowane
Numer
Dział
Statystyki
Liczba wyświetleń i pobrań: 144
Liczba cytowań: 0
