Blaski i cienie lustrzanej biologii
DOI:
https://doi.org/10.12775/KOSMOS.2024.002Słowa kluczowe
chiralność, lustrzana biologiaAbstrakt
Tworzenie cząsteczek będących lustrzanymi odbiciami naturalnie występujących białek i kwasów nukleinowych jest obiecującym kierunkiem badań w biologii i medycynie, ponieważ cząsteczki takie nie są immunogenne i na ogół nie są degradowane przez naturalnie występujące enzymy. Jednak na razie ich produkcja musi opierać się na chemicznej syntezie, co jest procesem długotrwałym i kosztownym. W związku z tym trwają prace na stworzeniem lustrzanych bakterii, które mogłyby produkować lustrzane cząsteczki. Takie lustrzane bakterie, złożone z lustrzanych białek, kwasów nukleinowych, cukrów i lipidów stanowiłyby jednak radykalne odejście od praw znanej nam biologii. Prawdopodobnie nie miałyby wrogów w naturalnym środowisku, a układ odpornościowy większości organizmów byłby wobec nich bezbronny. Dlatego grupa amerykańskich uczonych zajmujących się syntetyczną biologią zaproponowała wstrzymanie prac nad stworzeniem lustrzanego życia, do czasu wyjaśnienia wszystkich wątpliwości z tym związanych.
Bibliografia
Acedo J.Z., Chiorean S., Vederas J.C., van Belkum M.J., 2018. The expanding structural variety among bacteriocins from Gram-positive bacteria. FEMS Microbiol Rev. 42: 805–828. Doi: https://doi.org/10.1093/femsre/fuy033.
Adamala K.P., Agashe D., Belkaid Y., Bittencourt D.M.C., Cai Y. i współaut., 2024a. Confronting risks of mirror life. Science 386: 1351–1353. Doi: https://doi.org/10.1126/science.ads9158.
Adamala K.P., Agashe D., Binder D.J., Cai Y., Cooper V.S. i współaut., 2024a. Technical report on mirror bacteria: Feasibility and risks. Stanford Digital Repository 2024. Doi: https://doi.org/10.25740/cv716pj4036.
Aleksashin N.A., Szal T., d'Aquino A.E., Jewett M.C., Vázquez-Laslop N. i współaut., 2020. A fully orthogonal system for protein synthesis in bacterial cells. Nat Commun. 11: 1858. Doi: https://doi.org/10.1038/s41467-020-15756-1.
Bartnes, K., Hannestad, K., Guichard, G., Briand, J. P.,1997. A retro-inverso analog mimics the cognate peptide epitope of a CD4+ T cell clone. Eur J Immunol, 27: 1387–1391. Doi: https://doi.org/10.1002/eji.1830270614.
Bentley, R., 2006. The nose as a stereochemist. Enantiomers and odor. Chemical Reviews, 106, 4099–4112. Doi: https://doi.org/10.1021/cr050049t.
Benkirane N., Friede M., Guichard G., Briand J.P., Van Regenmortel M.H. i współaut., 1993. Antigenicity and immunogenicity of modified synthetic peptides containing D-amino acid residues. Antibodies to a D-enantiomer do recognize the parent L-hexapeptide and reciprocally. J Biol Chem 268: 26279–26285. Doi: https://doi.org/10.1016/S0021-9258(19)74312-9.
Berg P., Baltimore D., Boyer H.W., Cohen S.N., Davis R.W. i współaut, 1974. Potential biohazards of recombinant DNA molecules. Science 185: 303.
Berg P., Singer M.F., 1995. The recombinant DNA controversy: twenty years later. Proc Natl Acad Sci USA. 92: 9011–9013. Doi: https://doi.org/10.1073/pnas.92.20.9011.
Buchon, N., Broderick, N. A., Lemaitre, B., 2013. Gut homeostasis in a microbial world: Insights from Drosophila melanogaster. Nat Rev Microbiol, 119, 615–626. Doi: https://doi.org/10.1038/nrmicro3074.
Callewaert L., Michiels C.W., 2010. Lysozymes in the animal kingdom. J Biosci 35:127–60. Doi: https://doi.org/10.1007/s12038-010-0015-5.
Carroll L. 1871. Through the looking glass, Macmillan. O tym, co Alicja odkryła po drugiej stronie lustra. Przekład Maciej Słomczyński.
Cervettini, D., Tang, S., Fried, S. D., Willis, J. C. W., Funke i współaut., 2020. Rapid discovery and evolution of orthogonal aminoacyl-tRNA synthetase-tRNA pairs. Nature Biotechnol 38: 989–999. Doi: https://doi.org/10.1038/s41587-020-0479-2.
Chong, P., Sia, C., Tripet, B., James, O., Klein, M., 1996. Comparative immunological properties of enantiomeric peptides. Letters in Peptide Science, 3: 99–106. Doi: https://doi.org/10.1007/BF00126739.
Church, G.M., Regis, E., 2012. Regenesis: How Synthetic Biology Will Reinvent Nature and Ourselves, Basic Books, ISBN-13 978-0465021758.
Cobián Güemes A.G., Youle M., Cantú V.A., Felts B., Nulton J i współaut., 2016. Viruses as Winners in the Game of Life. Annu Rev Virol 3:197–214. Doi: https://doi.org/10.1146/annurev-virology-100114-054952.
Díaz-Perlas C., Varese M., Guardiola S., Sánchez-Navarro M., García J. i współaut., 2019. Protein Chemical Synthesis Combined with Mirror-Image Phage Display Yields d-Peptide EGF Ligands that Block the EGF-EGFR Interaction. Chembiochem 20: 2079–2084. Doi: https://doi.org/10.1002/cbic.201900355. Epub 2019 Jul 22.
Derda R., Aoki-Kinoshita K., Bennett C.S., Bertozzi C.R., Bojar D. i współaut., 2024., Remember The Glycans: Consideration of Glycans in Evaluating the Threat of Mirror-Image Life Forms. Science 386: 1351–1353. Doi: https://doi.org/10.1126/science.ads9158.
Díaz E., Ferrández, A., Prieto, M. A., García, J. L., 2001. Biodegradation of aromatic compounds by Escherichia coli. Microbiol Molec Biol Rev 65: 523–569. Doi: https://doi.org/10.1128/MMBR.65.4.523-569.2001.
Díaz-Perlas C., Varese M., Guardiola S., Sanchez-Navarro M., Garcia J i współaut., 2019. Protein chemical synthesis combined with mirror-image phage display yields D-peptide EGF ligands that block the EGF–EGFR interaction. ChemBioChem 20: 2079–2084. Doi: https://doi.org/10.1002/cbic.201900355.
Dierking, K., Yang, W., Schulenburg, H., 2016. Antimicrobial effectors in the nematode Caenorhabditis elegans: An outgroup to the Arthropoda. Phil Trans Royal Soc Series B, Biol Sci, 371: 20150299. Doi: https://doi.org/10.1098/rstb.2015.0299.
Dintzis H.M., Symer D.E., Dintzis R.Z., Zawadzke L.E., Berg J.M., 1993. A comparison of the immunogenicity of a pair of enantiomeric proteins. Proteins 16: 306–8. Doi: https://doi.org/10.1002/prot.340160309.
Dunkelberger, J. R., Song, W.C., 2010. Complement and its role in innate and adaptive immune responses. Cell Research, 20: 34–50. Doi: https://doi.org/10.1038/cr.2009.139.
Dunkelmann, D. L., Oehm, S. B., Beattie, A. T., Chin, J. W., 2021. A 68-codon genetic code to incorporate four distinct non-canonical amino acids enabled by automated orthogonal mRNA design. Nature Chem, 13: 1110–1117. Doi https://doi.org/10.1038/s41557-021-00764-5.
Engels F. Herrn Eugen Dührings Umwälzung der Wissenschaft. Genossenschaft Buchbruderei, Leipzig 1877.
Flajnik MF., 2018. A cold-blooded view of adaptive immunity. Nat Rev Immunol 18: 438–453. Doi: https://doi.org/10.1038/s41577-018-0003-9.
Free G., Van de Bund, W., Gawlik, B., Van Wijk, L., Wood, M. i współaut.., 2023. Unijna analiza katastrofy ekologicznej na Odrze w 2022 r. Doi: https://doi.org/10.2760/536489.
Gaut N.J., Adamala K.P., 2021. Reconstituting Natural Cell Elements in Synthetic Cells.Adv Biol. 5: e2000188. Doi: https://doi.org/10.1002/adbi.202000188.
Harris T.D., Reinl K.L., Azarderakhsh M., Berger S.A., Berman M.C., i współaut., 2024. What makes a cyanobacterial bloom disappear? A review of the abiotic and biotic cyanobacterial bloom loss factors. Harmful Algae 133: 102599. Doi: https://doi.org/10.1016/j.hal.2024.102599.
Harrison K., Mackay A.S., Kambanis L., Maxwell J.W.C., Payne R.J., 2023. Synthesis and applications of mirror-image proteins. Nat Rev Chem 7: 383–404. Doi: https://doi.org/10.1038/s41570-023-00493-y.
Helmchen G., 2016. The 50th Anniversary of the Cahn-Ingold-Prelog Specification of Molecular Chirality. Angew Chem Int Ed Engl 55: 6798–6799. Doi: https://doi.org/10.1002/anie.201603313.
Hutchison C.A. 3rd, Chuang R.Y., Noskov V.N., Assad-Garcia N., Deerinck T.J. i współaut., 2016. Design and synthesis of a minimal bacterial genome. Science 351: aad6253. Doi: https://doi.org/10.1126/science.aad6253.
Iwasaki A., Medzhitov R., 2015. Control of adaptive immunity by the innate immune system. Nat Immunol 16: 343–353. Doi: https://doi.org/10.1038/ni.3123.
Jauslin T., Lamrabet O., Crespo-Yañez X., Marchetti A., Ayadi I. i współaut., 2021. How Phagocytic Cells Kill Different Bacteria: a Quantitative Analysis Using Dictyostelium discoideum. mBio 12: e03169-20. Doi: https://doi.org/10.1128/mBio.03169-20.
Jin, M. S., Kim, S. E., Heo, J. Y., Lee, M. E., Kim i współaut., 2007. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130: 1071–1082. Doi: https://doi.org/10.1016/j.cell.2007.09.008.
Jin S., Wetzel D., Schirmer M., 2022. Deciphering mechanisms and implications of bacterial translocation in human health and disease. Curr Opin Microbiol 67:102147. Doi: https://doi.org/10.1016/j.mib.2022.102147.
Katoh T., Iwane Y., Suga H., 2017. Logical engineering of D-arm and T-stem of tRNA that enhances d-amino acid incorporation. Nucleic Acids Res 45: 12601–12610. Doi: https://doi.org/10.1093/nar/gkx1129.
Kawai T., Akira S., 2010. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11: 373–384. Doi: https://doi.org/10.1038/ni.1863.
Klinge S., Woolford, J.L., 2019. Ribosome assembly coming into focus. Nat Rev Mo. Cell Bio. 20: 116–131. Doi: https://doi.org/10.1038/s41580-018-0078-y.
Kohanski M.A., Dwyer D.J., Collins J.J., 2010. How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol 8: 423–35. Doi: https://doi.org/10.1038/nrmicro2333.
Kulkarni, O., Pawar R.D., Purschke W., Erlberg D, Selve N. i wspóałut., 2007. Spiegelmer Inhibition of CCL2/MCP-1 ameliorates lupus nephritis in MRL-(Fas)lpr mice. J. Am. Soc. Nephrol. 18, 2350-2358. Doi: https://doi.org/10.1681/ASN.2006121348.
Lander A.J., Jin Y., Luk L.Y.P., 2023. D-Peptide and D-Protein Technology: Recent Advances, Challenges, and Opportunities. ChemBioChem 24: e202200537. Doi: https://doi.org/10.1002/cbic.202200537.
Ling J.J., Fan C., Qin H., Wang M., Chen J. i współaut., 2023. Mirror-Image 5S Ribonucleoprotein Complexes. Angew Chem Int Ed Eng. 59: 3724–3731. Doi: https://doi.org/10.1002/anie.201914799.
Liu, Y., Holmstrom E., Zhang J., Ping Y., Wang., J i współaut., 2015. Synthesis and applications of RNAs with position-selective labelling and mosaic composition. Nature 522, 368–372. Doi: https://doi.org/10.1038/nature14352.
Martin H.S., Podolsky K.A., Devaraj N.K., 2012. Probing the Role of Chirality in Phospholipid Membranes. ChemBioChem 22: 3148–3157. Doi: https://doi.org/10.1002/cbic.202100232.
Mastellos, D. C., Hajishengallis, G., Lambris, J. D., 2024. A guide to complement biology, pathology and therapeutic opportunity. Nature Rev Immunol, 24: 118–141. Doi: https://doi.org/10.1038/s41577-023-00926-1.
Maslow K., Siegel L. 1984. Stereoisomerism and local chirality. J Am Chem Soc 106: 3319–3328. Doi: https://doi.org/10.1021/ja00323a043.
Mazur-Marzec H, Grabski M, Konkel R, Cegłowska M, Cyske Z i współaut., 2025. Genetic, metabolic and toxicological diversity within Prymnesium parvum (Haptophyte) from Polish waterbodies. Water Res 282: 123744. Doi: https://doi.org/10.1016/j.watres.2025.123744.
Meldal, M., Svendsen, I. B., Juliano, L., Juliano, M. A., Nery, E. D. i współaut., 1998. Inhibition of cruzipain visualized in a fluorescence quenched solid-phase inhibitor library assay. D-amino acid inhibitors for cruzipain, cathepsin B and cathepsin L. J Peptide Sci, 4: 83–91. Doi: https://doi.org/10.1039/d0cb00224k.
Miller, S. M., Simon, R. J., Ng, S., Zuckermann, R. N., Kerr, J. M. i współaut., 1995. Comparison of the proteolytic susceptibilities of homologous L-amino acid, D-amino acid, and N-substituted glycine peptide and peptoid oligomers. Drug Dev Res, 35: 20–32. Doi: https://doi.org/10.1002/ddr.430350105.
Nawrot R., Barylski J., Nowicki G., Broniarczyk J., Buchwald W. i współaut., 2014. Plant antimicrobial peptides. Folia Microbiol 59: 181–96. Doi: https://doi.org/10.1007/s12223-013-0280-4.
Ngou B.P.M., Ding P., Jones J.D.G., 2022. Thirty years of resistance: Zig-zag through the plant immune system. Plant Cell 34: 1447–1478. Doi: https://doi.org/10.1093/plcell/koac041.
Nicolaou K.C., Pulukuri K.K., Rigol S., Buchman M., Shah A.A. i współaut., 2017. Enantioselective Total Synthesis of Antibiotic CJ-16,264, Synthesis and Biological Evaluation of Designed Analogues, and Discovery of Highly Potent and Simpler Antibacterial Agents. J Am Chem Soc 139: 15868–15877. Doi: https://doi.org/10.1021/jacs.7b08749.
Olea, C. Jr, Weidmann, J., Dawson, P. E., Joyce, G. F., 2015. An l-RNA aptamer that binds and inhibits RNase. Chem Biol 22: 1437–1441. Doi: https://doi.org/10.1016/j.chembiol.2015.09.017
Pernthaler J., 2005. Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol 3: 537-546. Doi: https://doi.org/10.1038/nrmicro1180.
Perrin D., 2024. In response to „Confronting risks of mirror life”. Science 386:1351–1353. Doi: 10.1126/science.ads9158.
Regenmortel Van M.H., Muller S., 1998. D-peptides as immunogens and diagnostic reagents. Curr Opin Biotechnol 9: 377-382. doi: 10.1016/s0958-1669(98)80011-6.
Rohden F., Hoheisel J.D., Wieden H.J., 2021. Through the looking glass: milestones on the road towards mirroring life. Trends Biochem Sci 46: 931–943. Doi: https://doi.org/10.1016/j.tibs.2021.06.006.
Service R.F., 2022. A big step toward mirror-image ribosomes. Science 378: 345–346. Doi: https://doi.org/10.1126/science.adf4963.
Schmidt N., Kumar A., Korf L., Dinh-Fricke A.V., Abendroth F. i współaut., 2024. Development of mirror-image monobodies targeting the oncogenic BCR: ABL1 kinase. Nat Commun 15: 10724. Doi: https://doi.org/10.1038/s41467-024-54901-y.
Smolarek D., Krop-Watorek A., Waśniowska K., Czerwiński M., 2008. Molekularne podstawy układu grupowego ABO. Post Hig Med Dosw. 2008 Jan 16; 62: 4–17.
Sohlenkamp C., 2021. Crossing the lipid divide. J Biol Chem 297:100859. Doi: https://doi.org/10.1016/j.jbc.2021.100859.
Thompson, D., Pepys, M. B., Wood, S. P., 1999. The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure, 7: 169–177. Doi: https://doi.org/10.1016/S0969-2126(99)80023-9
Tokunaga, E., Yamamoto, T., Ito, E., Shibata, N., 2018. Understanding the thalidomide chirality in biological processes by the self-disproportionation of enantiomers. Sci Rep, 8: 17131. Doi: https://doi.org/10.1038/s41598-018-35457-6.
Tong M., French S., El Zahed S.S., Ong WK., Karp P.D. i współaut., 2020. Gene dispensability in Escherichia coli grown in thirty different carbon environments. mBio 11: e02865-20. Doi: https://doi.org/10.1128/mBio.02865-20.
Torres A.M., Tsampazi C., Geraghty D.P., Bansal P.S., Alewood .PF. i współaut., 2005. D-amino acid residue in a defensin-like peptide from platypus venom: effect on structure and chromatographic properties. Biochem J 391: 215–220. Doi: https://doi.org/10.1042/BJ20050900.
Uppalapati M., Lee D.J., Mandal K., Li H., Miranda L.P. i współaut., 2016. A potent D-protein antagonist of VEGF-A is nonimmunogenic, metabolically stable, and longer-circulating in vivo. ACS Chem Bio 11: 1058–1065. Doi: https://doi.org/10.1021/acschembio.5b01006.
Vantomme G., Crassous J., 2021. Pasteur and chirality: A story of how serendipity favors the prepared minds. Chirality 33: 597–601. Doi: https://doi.org/10.1002/chir.23349.
Wang G., 2014. Human antimicrobial peptides and proteins. Pharmaceuticals 7: 545594. Doi: https://doi.org/10.3390/ph7050545.
Ward P. A., 2010. The harmful role of C5a on innate immunity in sepsis. J Innate Immun, 2: 439–445. Doi: https://doi.org/10.1159/000317194.
Weinstock M., Jacobsen M.T., Kay M.S., 2014. Synthesis and folding of a mirrorimage enzyme reveals ambidextrous chaperone activity. Proc Nat Acad Sci USA. 111: 11679–11684. Doi: https://doi.org/10.1073/pnas.1410900111.
Xu Y., Zhu T.F., 2022. Mirror-image T7 transcription of chirally inverted ribosomal and functional RNAs. Science 378: 405–412. Doi: https://doi.org/10.1126/science.abm0646.
Yang C., Shi F., Li C., Wang Y., Wang L. i współaut., 2018. Single Dose of Protein Vaccine with Peptide Nanofibers As Adjuvants Elicits Long-Lasting Antibody Titer. ACS Biomater Sci Eng 4: 2000-2006. Doi: https://doi.org/10.1021/acsbiomaterials.7b00488.
Yeates, T.O., Kent, S.B.H., 2012. Racemic protein crystallography. Annu Rev Biophys 41: 41–61. Doi: https://doi.org/10.1146/annurev-biophys-050511-102333.
Zheng D., Huang C., Huang H., Zhao Y., Khan M.R.U. i współaut., 2020. Antibacterial Mechanism of Curcumin: A Review. Chem Biodivers 17: e2000171. Doi: https://doi.org/10.1002/cbdv.202000171.
Pobrania
Opublikowane
Numer
Dział
Statystyki
Liczba wyświetleń i pobrań: 541
Liczba cytowań: 0
