Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zarejestruj
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zarejestruj
  • Zaloguj
  • Język:
  • English
  • Język Polski

KOSMOS

Gatunki roślin wydmowych w regionie Morza Bałtyckiego: zagrożenia i perspektywy ochrony
  • Strona domowa
  • /
  • Gatunki roślin wydmowych w regionie Morza Bałtyckiego: zagrożenia i perspektywy ochrony
  1. Strona domowa /
  2. Archiwum /
  3. Tom 73 Nr 4 (344) (2024): Varia /
  4. Artykuły

Gatunki roślin wydmowych w regionie Morza Bałtyckiego: zagrożenia i perspektywy ochrony

Autor

  • Lidia Banaszczyk Katedra Biologii Eksperymentalnej i Biotechnologii Roślin, Pracownia Cytologii i Embriologii Roślin, Wydział Biologii, Uniwersytet Gdańskii https://orcid.org/0000-0002-8667-211X
  • Małgorzata Kapusta Laboratorium Bioobrazowania, Wydział Biologii, Uniwersytet Gdański https://orcid.org/0000-0003-4103-594X
  • Małgorzata Kozieradzka-Kiszkurno Katedra Biologii Eksperymentalnej i Biotechnologii Roślin, Pracownia Cytologii i Embriologii Roślin, Wydział Biologii, Uniwersytet Gdański https://orcid.org/0000-0002-9458-1779

DOI:

https://doi.org/10.12775/KOSMOS.2024.001

Słowa kluczowe

bioróżnorodność, erozja wydm, ochrona środowiska, rośliny wydmowe, zmiany klimatyczne

Abstrakt

Gatunki roślin wydmowych są narażone na wiele zagrożeń, zarówno naturalnych, jak i spowodowanych przez człowieka. Zmiany klimatu skutkują erozją wydm i zaburzeniami w naturalnej sukcesji tych ekosystemów. Do czynników antropogenicznych należą m.in. wprowadzanie gatunków obcych, nadmierna eksploatacja turystyczna oraz urbanizacja. Celem artykułu jest przedstawienie zagrożeń i form ochrony gatunków roślin wydmowych regionu bałtyckiego. Gatunki te pełnią kluczową rolę w utrzymaniu stabilności wydm i różnorodności biologicznej. Przedstawione zostały główne czynniki wpływające na degradację roślinności wydmowej, takie jak erozja, zanieczyszczenie środowiska, inwazja obcych gatunków, zmiany klimatu i presja turystyczna oraz możliwe sposoby ochrony tych gatunków roślin, opierając się na przykładach z różnych krajów nadbałtyckich. Artykuł ma charakter przeglądowy i podkreśla potrzebę współpracy międzynarodowej w tej dziedzinie.

Bibliografia

Ackermann G. 2012. Lepidodactylus lugubris (Squamata: Gekkonidae) als Beute von Pholcus phalangioides (Araneae: Pholcidae). Arachnologische Mitteilungen, 44: 14–16.

Agnarsson I. 2003. Spider webs as habitat patches – the distribution of kleptoparasites (Argyrodes, Theridiidae) among host webs (Nephila, Tetragnathidae). The Journal of Arachnology, 31(3), 344–349. Doi: https://doi.org/10.1636/s02-21.

Bielikowicz A. 1866. Słownik polsko-łaciński ks. Antoniego Bielikowicza A–Z.

Blamires S. J., Hou C., Chen L. F., Liao C. P., Tso I. M. 2013. Three-dimensional barricading of a predatory trap reduces predation and enhances prey capture. Behavioral Ecology and Sociobiology, 67: 709–714. Doi: https://doi.org/10.1007/s00265-013-1493-x.

Clausen I. H. S. 1987. On the biology and behaviour of Nephila. Bulletin of the British Arachnological Society, 7(5): 147–150.

Elgar M. A. 1989. Kleptoparasitism: a cost of aggregating for an orb-weaving spider. Animal Behaviour 37(6):1052–1055. Doi: https://doi.org/10.1016/0003-3472(89)90152-8.

Elgar M. A., Fahey B. F. 1996. Sexual cannibalism, competition, and size dimorphism in the orb-weaving spider Nephila plumipes Latreille (Araneae: Araneoidea). Behavioral Ecology, 7(2), 195–198. Doi: https://doi.org/10.1093/beheco/7.2.195.

Foelix R. 2010. Biology of spiders. Oxford University Press.

Gabriel R., Sherwood D. 2020. Notes on a predation of Omothymus violaceopes (Abraham, 1924) (Araneae: Theraphosidae) by Pholcus phalangioides (Fuesslin, 1775) (Araneae: Pholcidae). Journal of the British Tarantula Society, 35 (1): 8–9.

Gonzaga M. O., Santos A. J., Dutra G. F. 1998. Web invasion and araneophagy in Peucetia tranquillini (Araneae, Oxyopidae). Journal of Arachnology 26: 249–50.

Grabowski P., Szymkowiak P., 2017. Zróżnicowanie ptaszników (Theraphosidae) czyli gdzie meieszkają i jak żyją włochate bestie polujące na ptaki.Wszechświat, 118 (4–6), 126–133.

Hénaut Y., Machkour-M’Rabet S., Winterton P., Calmé S. 2010. Insect attraction by webs of Nephila clavipes (Araneae: Nephilidae). Journal of Arachnology, 38(1), 135–138. Doi: https://doi.org/10.1636/t08-72.1

Hormiga G., Kulkarni S., Arnedo M. A., Dimitrov D., Giribet G., Kallal R. J., Scharff N. 2023. Genitalic morphology and phylogenomic placement of the Australian spider Paraplectanoides crassipes Keyserling, 1886 (Araneae, Araneidae) with a discussion on the classification of the family Araneidae. Invertebrate Systematics 37(12): 797–818. Doi: https://doi.org/10.1071/IS23050.

Kuntner M., Gregorič M., Zhang S., Kralj-Fišer S., Li D. 2012. Mating plugs in polyandrous giants: which sex produces them, when, how and why? PLoS ONE 7(7): e40939. Doi: https://doi.org/10.1371/journal.pone.0040939.

Kuntner M., Hamilton C. A., Cheng R. C., Gregorič M., Lupse N., Lokovsek T., Lemmon E. M., Lemmon A. R., Agnarsson I., Coddington J. A., Bond J. E. 2019. Golden orbweavers ignore biological rules: phylogenomic and comparative analyses unravel a complex evolution of sexual size dimorphism. Systematic Biology 68(4): 555–572. Doi: https://doi.org/10.1093/sysbio/syy082.

Kuntner M., Kuntner E., Kuntner M., Kuntner I., Li D. 2023. Jumping spider invades an orb web to prey on a resident male. Ecosphere, 14(7): 1–4. Doi: https://doi.org/10.1002/ecs2.4595.

Kuntner M., Rudolf E., Cardoso P. 2017. Nephila inaurata. The IUCN Red List of Threatened Species 2017: e.T89292381A89292888, accessed on 18.01.2025. Doi: https://doi.org/10.2305/IUCN.UK.2017-1.RLTS.T89292381A89292888.en.

Liebsch C., Fliess M., Kuhbier J. W., Vogt P. M., Strauss S. 2020. Nephila edulis—breeding and care under laboratory conditions. Development Genes and Evolution, 230, 203–211. Doi: https://doi.org/10.1007/s00427-020-00649-6.

Liu F. Y., Liu J. Y., Yao X., Wang B. 2022. Hybrid sequencing reveals the full-length Nephila pilipes pyriform spidroin 1 (PySp1). International Journal of Biological Macromolecules, 200: 362–369. Doi: https://doi.org/10.1016/j.ijbiomac.2021.12.078.

Miller T. E., Taylor G. K., Mortimer B. 2022. Slit sense organ distribution on the legs of two species of orb-weaving spider (Araneae: Araneidae). Arthropod Structure & Development, 67: 101140. Doi: https://doi.org/10.1016/j.asd.2022.101140.

Miyashita T. 2002. Population dynamics of two species of kleptoparasitic spiders under different host availabilities. The Journal of Arachnology, 30(1), 31–38. Doi: https://doi.org/10.1636/0161-8202(2002)030[0031:PDOTSO]2.0.CO;2.

Morgan E. 2015. Sticky layers and shimmering weaves: a study of two human uses of spider silk. Journal of Design History, 29(1), 8–23. Doi: https://doi.org/10.1093/jdh/epv019.

Pérez-Miles F., 2020. New world tarantulas: taxonomy, biogeography and evolutionary biology of Theraphosidae. Zoological monographs, 6. Springer, Geneva.

Peters, H.-J. 2003. Tarantulas of the world: Amerika's Vogelspinnen. Published by the author, Wegberg, Germany, 328 pp.

Peters, H.-J. 2005. Tarantulas of the world: Kleiner Atlas der Vogelspinnen - Band 3. Published by the author, 130 pp.

Pulz R. 1987. Thermal and water relations. [W:] Ecophysiology of spiders (red.) Nentwig W. Springer Berlin Heidelberg: 26–55. Doi: https://doi.org/10.1007/978-3-642-71552-5_3.

Quiñones-Lebrón S. G., Kralj-Fišer S., Gregorič M., Lokovšek T., Čandek K., Haddad C. R., Kuntner M. 2016. Potential costs of heterospecific sexual interactions in golden orbweb spiders (Nephila spp.). Scientific reports, 6(1): 36908. Doi: https://doi.org/10.1038/srep36908.

Řezáč M., Růžička V., Hula V., Dolanský J., Machač O., Roušar A. 2021. Spiders newly observed in Czechia in recent years – overlooked or invasive species? BioInvasions Records 10(3): 555– 566. Doi: https://doi.org/10.3391/bir.2021.10.3.05.

Sherwood D. 2019. Some notes on araneophagy and other feeding trends in Pholcus phalangioides (Fuesslin, 1775) (Araneae: Pholcidae). Newsletter of the British Arachnological Society, 145: 6–7.

SpeciesPlus 2025, https://speciesplus.net/ dostęp 11.08.2025.

Szymański D. M., Szymański D. 2022. Theraphosidae (Araneae: Mygalomorphae) – hodowla, charakterystyka rodziny i przegląd dostępnych gatunków w Polsce. Kosmos 71, 4: 451–463. Doi: https://doi.org/10.36921/kos.2022_2876.

Szymański D. M., Szymański D. 2024. Double observation of araneophagy in synanthropic conditions in Poland. Newsletter of the British Arachnological Society, 160: 2.

Szymański D. M., Szymański D., Kilijanek J. K., Lis K. 2025. Ptasznikowate (Theraphosidae) – Etymologia nazw naukowych i propozycja nazw zwyczajowych. Ridero, Kraków.

Szymański D.M., Szymański D., Bogdanów P., Luzarski J. 2024. New Record of Ancylometes rufus (Walckenaer, 1837) (Araneae: Ctenidae) in Peru, with observation of predation by Tityus and verification of specimens present on the European market as Ancylometes sp. Ama. Journal of the British Tarantula Society 39 (1): 3–11.

Tso I. M., Tai P. L., Ku T. H., Kuo C. H., Yang E. C. 2002. Colour-associated foraging success and population genetic structure in a sit-and-wait predator Nephila maculata (Araneae: Tetragnathidae). Animal Behaviour, 63(1): 175–182. Doi: https://doi.org/10.1006/anbe.2001.1878.

Uhl G., Nessler S. H., Schneider J. M. 2010. Securing paternity in spiders? A review on occurrence and effects of mating plugs and male genital mutilation. Genetica, 138, 75–104. Doi: https://doi.org/10.1007/s10709-009-9388-5.

Walckenaer C. A. 1841. Histoire naturelle des Insects. Aptères. Tome deuxième. Roret, Paris, 549 pp., pl. 16–22. [not published in 1837, see pp. 430, 452, 505; plates in second pdf of Walckenaer, 1837] Doi: https://doi.org/10.5962/bhl.title.61095.

Webb N. 1979. An unusual capture by Pholcus. Newsletter of the British Arachnological Society, 26: 13.

World Spider Catalog 2025. World Spider Catalog. Version 25.5. Natural History Museum Bern, online at http://wsc.nmbe.ch, accessed on 05.01.2025. Doi: https://doi.org/10.24436/2.

Żabka M. M. 2013. Pajęczy świat. Warszawa: Muzeum i Instytut Zoologii PAN.

KOSMOS

Pobrania

  • PDF

Opublikowane

2024-12-31

Numer

Tom 73 Nr 4 (344) (2024): Varia

Dział

Artykuły

Licencja

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 149
Liczba cytowań: 0

W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa