Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

KOSMOS

Molecular immigrants, or organellar inserts in the nuclear genome of plants
  • Home
  • /
  • Molecular immigrants, or organellar inserts in the nuclear genome of plants
  1. Home /
  2. Archives /
  3. Vol. 74 No. 1 (345) (2025): Varia /
  4. Articles

Molecular immigrants, or organellar inserts in the nuclear genome of plants

Authors

  • Dorota Kannenberg-Leszczyńska Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University https://orcid.org/0000-0002-4015-996X
  • Bartosz Ulaszewski Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University https://orcid.org/0000-0003-2981-1205
  • Jarosław Burczyk Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University https://orcid.org/0000-0002-6899-2523

DOI:

https://doi.org/10.12775/KOSMOS.2025.003

Keywords

NUMT, NUPT, organellar insertions, plant genome, plant genomics

Abstract

Genetic material is found in plants in three different organelles: the cell nucleus, mitochondria, and chloroplasts. Molecular research has shown that fragments of the organelle's genetic material can migrate to the cell nucleus and integrate with the nuclear DNA. Particularly interesting are inserts of mitochondrial origin - NUMT (Nuclear Mitochondrial DNA) and chloroplast inserts - NUPT (Nuclear Plastid DNA). It has been shown that the phenomenon of insert migration occurs with varying intensity in different species. The search for NUMT and NUPT is an area for innovative research. The analysis involves comparing the sequences of the chloroplast/mitochondrial genome with the nuclear genome and checking whether fragments of the organellar genome are found in the nuclear genome. Understanding the mechanisms and significance of DNA transfer from organelles to the cell nucleus could lead to a breakthrough in the understanding of plant genome function.

References

Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. (1990). Basic local alignment search tool. Journal of Molecular Biology 215(3): 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

Hamaji T., Smith D.R., Noguchi H., Toyoda A., Suzuki M., Kawai-Toyooka H., Nozaki H. (2013). Mitochondrial and plastid genomes of the colonial green alga Gonion pectorale give insights into the origins of organelle DNA architecture within the Volvocales. PloS ONE 8(2): e57177. https://doi.org/10.1371/journal.pone.0057177

Heslop-Harrison J.S., Schwarzacher T. (2011). Organisation of the plant genome in chromosomes. The Plant Journal 66(1): 18–33. https://doi.org/10.1111/j.1365-313X.2011.04544.x

Huang C.Y., Grünheit N., Ahmadinejad N., Timmis J.N., Martin W. (2005). Mutational decay and age of chloroplast and mitochondrial genomes transferred recently to angiosperm nuclear chromosomes. Plant Physiology 138(3): 1723–1733. https://doi.org/10.1104/pp.105.060327

Kleine T., Maier U.G., Leister D. (2009). DNA transfer from organelles to the nucleus: the idiosyncratic genetics of endosymbiosis. Annual Review of Plant Biology 60: 115–138. https://doi.org/10.1146/annurev.arplant.043008.092119

Ko Y., Kim S. (2016). Analysis of Nuclear Mitochondrial DNA Segments of Nine Plant Species: Size, Distribution, and Insertion Loci. Genomics & Informatics 14(3): 90–95. https://doi.org/10.5808/GI.2016.14.3.90

Lang D., Zhang S., Ren P., Liang F., Sun Z., Meng G., i in. (2020). Comparison of the two up-to-date sequencing technologies for genome assembly: HiFi reads of Pacific Biosciences Sequel II system and ultralong reads of Oxford Nanopore. GigaScience 9(12): giaa123. https://doi.org/10.1093/gigascience/giaa123

Lister D.L., Bateman J.M., Purton S., Howe C.J. (2003). DNA transfer from chloroplast to nucleus is much rarer in Chlamydomonas than in tobacco. Gene 316: 33–38. https://doi.org/10.1016/s0378-1119(03)00754-6

Lough A.N., Faries K.M., Koo D.H., Hussain A., Roark L.M., Langewisch T.L., i in. (2015). Cytogenetic and Sequence Analyses of Mitochondrial DNA Insertions in Nuclear Chromosomes of Maize. G3: Genes, Genomes, Genetics 5(11): 2229–2239. https://doi.org/10.1534/g3.115.020677

Matsunaga S., Katagiri Y., Nagashima Y., Sugiyama T., Hasegawa J., Hayashi K., Sakamoto T. (2013). New insights into the dynamics of plant cell nuclei and chromosomes. International Review of Cell and Molecular Biology 305: 253–301. https://doi.org/10.1016/B978-0-12-407695-2.00006-8

Michalovova M., Vyskot B., Kejnovsky E. (2013). Analysis of plastid and mitochondrial DNA insertions in the nucleus (NUPTs and NUMTs) of six plant species: size, relative age and chromosomal localization. Heredity 111(4): 314–320. https://doi.org/10.1038/hdy.2013.51

Needleman S.B., Wunsch C.D. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48(3): 443–453. https://doi.org/10.1016/0022-2836(70)90057-4

Richly E., Leister D. (2004). NUPTs in sequenced eukaryotes and their genomic organization in relation to NUMTs. Molecular Biology and Evolution 21(10): 1972–1980. https://doi.org/10.1093/molbev/msh210

Silva S.R., Alvarenga D.O., Aranguren Y., Penha H.A., Fernandes C.C., Pinheiro D.G., i in. (2017). The mitochondrial genome of the terrestrial carnivorous plant Utricularia reniformis (Lentibulariaceae): Structure, comparative analysis and evolutionary landmarks. PLoS One 12(7): e0180484. https://doi.org/10.1371/journal.pone.0180484

Smith D.R. (2011). Extending the limited transfer window hypothesis to inter-organelle DNA migration. Genome Biology and Evolution 3: 743–748. https://doi.org/10.1093/gbe/evr068

Smith D.R., Crosby K., Lee R.W. (2011). Correlation between nuclear plastid DNA abundance and plastid number supports the limited transfer window hypothesis. Genome Biology and Evolution 3: 365–371. https://doi.org/10.1093/gbe/evr001

Stegemann S., Hartmann S., Ruf S., Bock R. (2003). High-frequency gene transfer from the chloroplast genome to the nucleus. Proceedings of the National Academy of Sciences of the United States of America 100(15): 8828–8833. https://doi.org/10.1073/pnas.1430924100

Thorsness P.E., Fox T.D. (1990). Escape of DNA from mitochondria to the nucleus in Saccharomyces cerevisiae. Nature 346(6282): 376–379. https://doi.org/10.1038/346376a0

Timmis J.N., Ayliffe M.A., Huang C.Y., Martin W. (2004). Endosymbiotic gene transfer: Organelle genomes forge eukaryotic chromosomes. Nature Reviews Genetics 5(2): 123–135. https://doi.org/10.1038/nrg1271

van den Boogaart P., Samallo J., Agsteribbe E. (1982). Similar genes for a mitochondrial ATPase subunit in the nuclear and mitochondrial genomes of Neurospora crassa. Nature 298(5870): 187–189. https://doi.org/10.1038/298187a0

Vivante A., Brozgol E., Bronshtein I., Garini Y. (2017). Genome organization in the nucleus: From dynamic measurements to a functional model. Methods 123: 128–137. https://doi.org/10.1016/j.ymeth.2017.01.008

Wróbel L., Topf U., Bragoszewski P., Wiese S., Sztolsztener M.E., Oeljeklaus S., i in. (2015). Mistargeted mitochondrial proteins activate a proteostatic response in the cytosol. Nature 524(7566): 485–488. https://doi.org/10.1038/nature14951

Wang D., Lloyd A.H., Timmis J.N. (2012). Nuclear genome diversity in somatic cells is accelerated by environmental stress. Plant Signaling & Behavior 7(5): 595–597. https://doi.org/10.4161/psb.19871

Yoshida T., Furihata H.Y., Kawabe A. (2014). Patterns of genomic integration of nuclear chloroplast DNA fragments in plant species. DNA Research 21(2): 127–140. https://doi.org/10.1093/dnares/dst045

Yoshida T., Furihata H.Y., Kawabe A. (2017). Analysis of nuclear mitochondrial DNAs and factors affecting patterns of integration in plant species. Genes & Genetic Systems 92(1): 27–33. https://doi.org/10.1266/ggs.16-00039

Zhang G.J., Dong R., Lan L.N., Li S.F., Gao W.J., Niu H.X. (2020). Nuclear integrants of organellar DNA contribute to genome structure and evolution in plants. International Journal of Molecular Sciences 21(3): 707. https://doi.org/10.3390/ijms21030707

KOSMOS

Downloads

  • PDF (Język Polski)

Published

2025-03-30

Issue

Vol. 74 No. 1 (345) (2025): Varia

Section

Articles

License

Copyright (c) 2025 KOSMOS

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Stats

Number of views and downloads: 34
Number of citations: 0

Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop