Effects of cold spring on tropical sorghum
DOI:
https://doi.org/10.12775/KOSMOS.2025.011Keywords
Sorghum bicolor L. Moench, chilling stress, emergence, germination rate, stress response, sub- optimal temperaturesAbstract
Sorghum (Sorghum bicolor L. Moench), a species originating from tropical regions of the world, is often exposed to cold in the temperate climate of Europe, including Poland, especially at the beginning of season, which limits cultivation and yield. However, due to its ability to tolerate prolonged water shortages and its versatile uses (food, feed, biogas), sorghum appears to be an ideal alternative to other crops for the cultivation in areas where drought is common. This paper presents the effects of cold on the growth and development of sorghum on morphological, physiological, anatomical, and molecular levels. The consequences of the exposure to cold of the juvenile seedling stage, during so-called „cold spring” on later stages of sorghum development, during flowering and seed development, were also discussed. Also, the perspectives for breeders seeking new sources of resistance in creating new sorghum varieties with improved tolerance to low temperature were described.
References
Anda, A., Pinter, L., 1994. Sorghum Germination and Development as Influenced by Soil Temperature and Water Content. Agronomy Journal, 86: 621–624. https://doi.org/10.2134/agronj1994.00021962008600040008x
Anil Kumar, S., Hima Kumari, P., Nagaraju, M., Sudhakar Reddy, P., Durga Dheeraj, T. i in, 2022. Genome-wide identification and multiple abiotic stress transcript profiling of potassium transport gene homologs in Sorghum bicolor. Frontiers in Plant Science, 13: 13:965530. https://doi.org/10.3389/fpls.2022.965530
Antony, R.M., Kirkham, M.B., Todd, T.C., Bean, S.R., D. Wilson, J. i in, 2019. Low-temperature tolerance of maize and sorghum seedlings grown under the same environmental conditions. Journal of Crop Improvement, 33: 287–305. https://doi.org/10.1080/1542 7528.2019.1579139
Badiani, M., Paolacci, A.R., Fusari, A., D’Ovidio, R., Scandalios, J.G. i in, 1997. Non-optimal growth temperatures and antioxidants in the leaves of Sorghum bicolor (L.) Moench. II. Short-term acclimation. Journal of Plant Physiology, 151: 409–421. https://doi.org/10.1016/S0176-1617(97)80005-3
Balota, M., Payne, W.A., Veeragoni, S.K., Stewart, B.A., Rosenow, D.T., 2010. Respiration and Its Relationship to Germination, Emergence, and Early Growth Under Cool Temperatures in Sorghum. Crop Science, 50: 1414–1422. https://doi.org/10.2135/cropsci2009.08.0448
Bekele, W.A., Fiedler, K., Shiringani, A., Schnaubelt, D., Windpassinger, S. i in, 2014. Unravelling the genetic complexity of sorghum seedling development under low-temperature conditions. Plant, Cell & Environment, 37: 707–723. https://doi.org/10.1111/pce.1218
Bilska, A., Sowiński, P., 2010. Closure of plasmodesmata in maize (Zea mays) at low temperature: a new mechanism for inhibition of photosynthesis. Ann. Bot., 106: 675–686. https://doi.org/10.1093/aob/mcq169
Burow, G., Burke, J.J., Xin, Z., Franks, C.D., 2011. Genetic dissection of early-season cold tolerance in sorghum (Sorghum bicolor (L.) Moench). Molecular Breeding, 28: 391–402. https://doi.org/10.1007/s11032010-9491-4
Casto, A.L., Murphy, K.M., Gehan, M.A., 2021. Coping with cold: Sorghum cold stress from germination to maturity. Crop Science, 61: 3894–3907. https://doi.org/10.1002/csc2.20609
Chopra, R., Burow, G., Hayes, C., Emendack, Y., Xin, Z. i in, 2015. Transcriptome profiling and validation of gene based single nucleotide polymorphisms (SNPs) in sorghum genotypes with contrasting responses to cold stress. BMC Genomics, 16: 1040. https://doi.org/10.1186/s12864-015-2268-8
Cisse, N.D., Ejeta, G., 2003. Genetic Variation and Relationships among Seedling Vigor Traits in Sorghum. Crop Science, 43: 824–828. https://doi.org/10.2135/cropsci2003.8240
Clayton, W.D., 1961. Proposal to conserve the generic name Sorghum Moench (Gramineae) versus Sorghum Adans (Gramineae). Taxon, 10: 242–243. https://doi.org/10.2307/1216338
Cui, H., Chen, J., Liu, M., Zhang, H., Zhang, S. i in, 2022. Genome-Wide Analysis of C2H2 Zinc Finger Gene Family and Its Response to Cold and Drought Stress in Sorghum [Sorghum bicolor (L.) Moench]. International Journal of Molecular Sciences, 23: https://doi.org/10.3390/ijms23105571
Dillon, S.L., Lawrence, P.K., Henry, R.J., Price, H.J., 2007. Sorghum resolved as a distinct genus based on combined ITS1, ndhF and Adh1 analyses. Plant Systematics and Evolution, 268: 29–43. https://doi.org/10.1007/s00606-007-0571-9
Emendack, Y., Sanchez, J., Hayes, C., Nesbitt, M., Laza, H. i in, 2021. Seed-to-seed earlyseason cold resiliency in sorghum. Scientific Reports, 11: 7801. https://doi.org/10.1038/s41598-021-87450-1
Ercoli, L., Mariotti, M., Masoni, A., Arduini, I., 2004. Growth responses of sorghum plants to chilling temperature and duration of exposure. European Journal of Agronomy, 21: 93–103. https://doi.org/10.1016/S11610301(03)00093-5
Evert, R.F., Russin, W.A., Bosabalidis, M., 1996. Anatomical and ultrastructural changes associated with sink-to-source transition in developing maize leaves. International Journal of Plant Sciences, 157: 247–261. https://doi.org/10.1086/297344
Franks, C.D., Burow, G., Burke, J., 2006. A Comparison of U.S. and Chinese Sorghum Germplasm for Early Season Cold Tolerance. Crop Science, 46: 1371–1376. https://doi.org/10.2135/cropsci2005.08-0279
Knoll, J., Ejeta, G., 2008. Marker-assisted selection for early-season cold tolerance in sorghum: QTL validation across populations and environments. Theoretical and Applied Genetics, 116: 541–553. https://doi.org/10.1007/s00122-007-0689-8
Knoll, J., Gunaratna, N., Ejeta, G., 2008. QTL analysis of early-season cold tolerance in sorghum. Theoretical and Applied Genetics, 116: 577–587. https://doi.org/10.1007/s00122-007-0692-0
Maheshwari, P., Kummari, D., Palakolanu, S.R., Nagasai Tejaswi, U., Nagaraju, M. i in, 2019. Genome-wide identification and expression profile analysis of nuclear factor Y family genes in Sorghum bicolor L. (Moench). PLOS ONE, 14: e0222203. https://doi.org/10.1371/journal.pone.0222203
Major, D.J., Hamman, W.M., Rood, S.B., 1982. Effects of short-duration chilling temperature exposure on growth and development of sorghum. Field Crops Research, 5: 129–136. https://doi.org/10.1016/03784290(82)90013-2
Marla, S.R., Shiva, S., Welti, R., Liu, S., Burke, J.J. in, 2017. Comparative Transcriptome and Lipidome Analyses Reveal Molecular Chilling Responses in Chilling-Tolerant Sorghums. The Plant Genome, 10: plantgenome2017.2003.0025. https://doi.org/10.3835/plantgenome2017.03.0025
Maulana, F., Tesso, T.T., 2013. Cold Temperature Episode at Seedling and Flowering Stages Reduces Growth and Yield Components in Sorghum. Crop Science, 53: 564–574. https://doi.org/10.2135/cropsci2011.12.0649
Ortiz, D., Hu, J., Salas Fernandez, M.G., 2017. Genetic architecture of photosynthesis in Sorghum bicolor under non-stress and cold stress conditions. Journal of Experimental Botany, 68: 4545–4557. https://doi.org/10.1093/jxb/erx276
Parra-Londono, S., Fiedler, K., Kavka, M., Samans, B., Wieckhorst, S. i in, 2018. Genetic dissection of early-season cold tolerance in sorghum: genome-wide association studies for seedling emergence and survival under field and controlled environment conditions. Theoretical and Applied Genetics, 131: 581–595. https://doi.org/10.1007/s00122-017-3021-2
Rutayisire, A., Lubadde, G., Mukayiranga, A., Edema, R., 2021. Response of Sorghum to Cold Stress at Early Developmental Stage. International Journal of Agronomy, 2021: 8875205. https://doi.org/10.1155/2021/8875205
Salas Fernandez, M.G., Schoenbaum, G.R., Goggi, A.S., 2014. Novel Germplasm and Screening Methods for Early Cold Tolerance in Sorghum. Crop Science, 54: 2631–2638. https://doi.org/10.2135/cropsci2014.01.0025
Taylor, A.O., Craig, A.S., 1971. Plants under Climatic Stress II. Low Temperature, High Light Effects on Chloroplast Ultrastructure. Plant Physiology, 47: 719–725. https://doi.org/10.1104/pp.47.5.719
Tiryaki, I., Andrews, D.J., 2001. Germination and Seedling Cold Tolerance in Sorghum. Agronomy Journal, 93: 1391–1397. https://doi.org/10.2134/agronj2001.1391
Venkateswaran, K., Sivaraj, N., Pandravada, S.R., Reddy, M.T., Babu, B.S., 2019. Chapter 3 – Classification, Distribution and Biology, w: Aruna C., Visarada K.B.R.S., Bhat B.V., Tonapi V.A. (Red.), Breeding Sorghum for Diverse End Uses. Woodhead Publishing, s. 33–60. https://doi.org/10.1016/B978-0-08101879-8.00003-6
Vera-Hernández, P.F., Mendoza Onofre, L.E., Rosas Cárdenas, F.d.F., 2023. Responses of sorghum to cold stress: A review focused on molecular breeding. Frontiers in Plant Science, 14: https://doi.org/10.3389/fpls.2023.1124335
Vera-Hernández, P.F., Ortega-Ramírez, M.A., Martínez Núñez, M., Ruiz-Rivas, M., Rosas-Cárdenas, F.F., 2018. Proline as a probable biomarker of cold stress tolerance in sorghum (Sorghum bicolor). Mexican Journal of Biotechnology, 3: 77–86. https://doi.org/10.29267/mxjb.2018.3.3.77
Wasylikowa, K., Dahlberg, J., 1999. Sorghum in the Economy of the Early Neolithic Nomadic Tribes at Nabta Playa, Southern Egypt, w: van der Veen M. (Red.), The Exploitation of Plant Resources in Ancient Africa. Springer, Boston, MA, s. 11–31. https://doi.org/10.1007/978-1-4757-6730-8_2
Winchell, F., Stevens, C.J., Murphy, C., Champion, L., Fuller, D., 2017. Evidence for Sorghum Domestication in Fourth Millennium BC Eastern Sudan: Spikelet Morphology from Ceramic Impressions of the Butana Group. Current Anthropology, 58: 673–683. https://doi.org/10.1086/693898
Windpassinger, S., Friedt, W., Deppé, I., Werner, C., Snowdon, R. i in, 2017. Towards Enhancement of Early-Stage Chilling Tolerance and Root Development in Sorghum F1 Hybrids. Journal of Agronomy and Crop Science, 203: 146–160. https://doi.org/10.1111/jac.12171
Downloads
Published
Issue
Section
License
Copyright (c) 2026 KOSMOS

This work is licensed under a Creative Commons Attribution 4.0 International License.
Stats
Number of views and downloads: 26
Number of citations: 0