Phenomics: a modern approach to old questions
DOI:
https://doi.org/10.12775/KOSMOS.2025.017Keywords
color analysis, phenomics, plant phenotyping, teledetctionAbstract
Plant phenomics deals with the study of the traits that make up the phenotype. The quantitative assessment of such traits, phenotyping of plants, involves a number of techniques, largely non-destructive, based on the analysis of images from cameras of various types, including 3D, termal-, multi- and hyperspectral. This makes it possible to track on a timeline the course of plant growth and development processes, assess their physiological state or the appearance of early signs of diseases or developmental abnormalities. Nowadays, plant phenotyping is mainly focused on the practical aspect, i.e. the detection of traits determining abiotic and biotic stress tolerance (handheld instruments and/or automated phenotyping platforms), as well as the remote assessment (drones and satellites) of the physiological state of agricultural crops and the identification of drying areas. However, there are also known applications of high-throughput phenotyping techniques in basic research, including those related to plant adaptation strategies in different environments.
References
Adamsen F.J., Pinter Jr P.J., Barnes E.M., LaMorte R.L., Wall S.W. i in., 1999. Measuring wheat senescence with a digital camera. Crop Science 39, 719–724. https://doi.org/10.2135/cropsci1999.0011183X003900030019x
Ahmad I.S., Reid J.F. 1996. Evaluation of colour representations for maize images. Journal of Agricultural Engineering Research 63, 185196. https://doi.org/10.1006/jaer.1996.0020
Appricio N., Villegas D., Casadesus J., Araus J.L., Royo C. 2020. Spectral vegetation indices as non-destructive tools for determining durum wheat yield. Agronomy Journal 92, 83–91. https://doi.org/10.2134/agronj2000.92183x
Al-Gaadi K.A., Hassaballa A.A., Tola E., Kayad A.G., Madugundu R. i in., 2019. Impact of center pivot irrigation system uniformity on growth of potato crop and residual soil nitrogen. International Journal of Agricultural and Biological Engineering 12. 126–131. https://doi.org/0.25165/j.ijabe.20191201.3684
Araus J.L., Cairns J.E. 2014. Field high-throughput phenotyping: the new crop breeding frontier. Trends in Plant Sciences 18, 52–61. https://doi.org/10.1016/j.tplants.2013.09.008
Bacci, L.; De Vincenzi, M.; Rapi, B., Arca B., Bebincasa F. 1998. Two methods for the analysis of colorimetric components applied to plant stress monitoring. Computers and Electronics in Agriculture 19, 167–186. https://doi.org/10.1016/S0168-1699(97)00042-2
Bodner G., Alsalem M., Nakhforoosh A., Arnold T., Leitner D. 2017. RGB and spectral root imaging for plant phenotyping and physiological research: experimental setup and imaging protocols. Journal of Visualized Experiments 126, e56251. https://doi.org/10.3791/56251
Caradus J.R. 2023. Perceptions of plant breeding methods–from ‘phenotypic selection’ to ‘genetic modification’ and ‘new breeding technologies’ New Zealand Journal of Agricultural Research. 67, 621–669. https://doi.org/10.1080/00288233.2023.2187425
Castillo-Girones S., Munera S., Martinez-Sober M., Blasco J., Cuberro S., Gomez-Sanchis J. 2025. Artificial Neural Networks in Agriculture, the core of artificial intelligence: What, When, and Why. Computers and Electronics in Agriculture 230, 109938. https://doi.org/10.1016/j.compag.2025.109938
Cetner D., Dąbrowski P., Samborska I.A., Łukasik I., Swoczyna T. i in., 2016. Zastosowanie pomiarów fluorescencji chlorofilu w badaniach środowiskowych. Kosmos 65, 197–205.
Chen J.-C., Yang C.-M., Wu S.-T., Chung Y.-L., Charles A.L., Chen C.-T. 2007. Leaf chlorophyll content and surface spectral reflectance of tree species along a terrain gradient in Taiwan’s Kenting National Park. Botanical Studies 48, 71–77.
Collins G.N. 1914. Pueblo Indian maize breeding. Journal of Heredity 5, 255–268. https://doi.org/10.1093/oxfordjournals.jhered.a107868
Enders T.A., Dennis S.St., Oakland J., Callen S.T., Gehan M.A. i in., 2018. Classifying cold‐stress responses of inbred maize seedlings using RGB imaging. Plant Direct 3, 1–11. https://doi.org/10.1002/pld3.104
Gamon J.A., Kovalchuck O., Wong C.Y.S., Harris A., Garrity S.R. 2015. Monitoring seasonal and diurnal changes in photosynthetic pigments with automated PRI and NDVI sensors. Biogeosciences 12, 4149–4159. https://doi.org/10.5194/bg-12-4149-2015
Huete A.R. 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment 25, 295–309. https://doi.org/10.1016/00344257(88)90106-X
Hunt, R. 1990. Relative growth rates. In: Basic Growth Analysis. Springer, Dordrecht. Hunt Jr., E.R., Doraiswamy P.C., McMurtrey J.E., Daughtry C.S.T., Perry E.M. i in., 2013. A visible band index for remote sensing leaf chlorophyll content at the canopy scale. International Journal of Applied Earth Observation and Geoinformation 21, 103–112. https://doi.org/10.1016/j.jag.2012.07.020
Jordan C.F. 1969. Derivation of leaf area index from quality of light on the forest floor. Ecology 50, 663–666.
Kampmann H.H., Hansen O.B. 1994. Using colour image analysis for quantitative assessement of powdery mildew on cucumber. Euphytica 79, 19–27. https://doi.org/10.1007/BF00023572
Kubar M.S., Wang C., Noor R.S., Feng M., Yang W. i in., 2022. Nitrogen fertilizer application rates and ratios promote the biochemical and physiological attributes of winter wheat. Frontiers in Plant Sciences 13, 1011515. https://doi.org/10.3389/fpls.2022.1011515
Kubiak K., Kotlarz J. 2019. Zastosowanie satelitarnych wskaźników teledetekcyjnych do monitorowania uwilgocenia biomasy w uprawach miskanta olbrzymiego (Miscanthus x gigantheus). Technika Rolnicza Ogrodnicza Leśna 3, 16–18.
Liang Z., Pandey P., Stoerger V., Xu Y., Qiu Y. i in., 2018. Conventional and hyperspectral time-series imaging of maize lines widely used in field trials. Gigascience 7, 1–11. https://doi.org/10.1093/gigascience/gix117
Machul M. 2001. Ocena stanu odżywienia roślin azotem z zastosowaniem testów roślinnych. Postępy Nauk Rolniczych 3/2001. Majer P., Sass L., Horvath G.V., Hideg E. 2010. Leaf hue measurements offer a fast, highthroughput initial screening of photosynthesis in leaves. Journal of Plant Physiology 167, 74–76. https://doi.org/10.1016/j.jplph.2009.06.015
Martin, D.P., Rybicki E.P. 1998. Microcomputer-based quantification of maize streak virus symptoms in Zea mays. Phytopathology 88, 422–427. https://doi.org/10.1094/PHYTO.1998.88.5.422
Minervini M., Giuffrida M.V., Perata P., Tsaftaris S.A. 2017. Phenotiki: an open software and hardware platform for affordable and easy image-based phenotyping of rosette-shaped plants. The Plant Journal 90, 204–216. https://doi.org/10.1111/tpj.13472
Olmstead J.W., Lang, G.A. 2001. Assessment of severity of powdery mildew infection of sweet cherry leaves by digital image analysis. HortScience 36, 107–111.
Nguyen L.L.P., Baranyai L., Nagy D., Mahajan P.V., Zsom-Mucha V., Zsom T. 2021. Color analysis of horticultural produces using hue spectra fingerprints. MethodsX 8, 101594. https://doi.org/10.1016/j.mex.2021.101594
Ntakos G., Prikaziuk E., Vilfan N., van der Wal T., van der Tol. 2025. From fluorescence to biomass: A comprehensive analysis via crop modeling and sensing techniques. Smart Agricultural Technology 10, 100807. https://doi.org/10.1016/j.atech.2025.100807
Paulus S. 2019. Measuring crops in 3D: using geometry for plant phenotyping. Plant methods 15, 103. https://doi.org/10.1186/s13007019-0490-0
Perez, A.J. Lopez F., Benlloch, J.V. Christensen S. 2000. Colour and shape analysis techniques for weed detection in cereal fields. Computers and Electronics in Agriculture. 25, 197–212. https://doi.org/10.1016/ S0168-1699(99)00068-X
Price T.V., Gross R., Ho Wey J., Osborne C.F. 1993. A comparison of visual and digital image-processing methods in quantifying the severity of coffee leaf rust (Hemileia vastatrix). Australian Journal of Experimental Agriculture 33, 97–101. https://doi.org/10.1071/EA9930097
Rybka K. 2017. Fenotypowanie roślin. Konferencja EPPN 2020 w Tartu/ Estonia. Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin 282, 161–174. https://doi.org/10.37317/biul2017-0022
Rybka K. 2023. Najnowsze doniesienia z zakresu biotechnologii i hodowli zbóż: CBB7 siódma konferencja Cereal Biotechnology and Breeding w Wernigerode, Niemcy. Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin 300, 77–89. https://doi.org/10.37317/biul2023-0014
Sancho-Adamson M., Trillas I.M., Bort J., Fernandez-Gallego J.A., Romanyà J. 2019. Useof RGB vegetation indexes in assessing early effects of verticillium wilt of olive in symptomatic plants in high and low fertility scenarios. Remote Sensing 11, 607. https://doi.org/10.3390/rs1106060
Schrevens E., Raeymaeckers L. 1992. Colour characterization of golden delicious apples using digital image processing. Acta Horticulturae 304, 159–166. https://doi.org/10.17660/ActaHortic.1992.304.17
Schucknecht A., Meroni M., Kayitakire F., Boureima A. 2017. Phenology-based biomass estimation to support rangeland management in semi-arid environments. Remote Sensing 9, 463. https://doi.org/10.3390/rs9050463
Sobkowiak A., Szczepanik j., Sowiński P. 2013. Molekularne podłoże udomowienia kukurydzy. Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin 267, 41–55. https://doi.org/10.37317/biul-2013-0049
Sowiński P., Wieliczko-Manowska K., Grzybowski M., Jończyk M., Sowiński J. 2025. Diverse coping modes of maize in cool environment at early growth. BMC Plant Biology 25, 191. https://doi.org/10.1186/s12870025-06198-2
Stefański P., Rybka K., Matysik P. 2024. Fenotypowanie zagęszczenia łanu pszenżyta ozimego w warunkach polowych przy użyciu kamery RGB. Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin, 301, 3–11. https://doi.org/10.37317/biul-2024-0001
Sulkiewicz M., Ciereszko I. 2016. Fluorescencja chlorofilu a – historia odkrycia i zastosowanie w badaniach roślin. Kosmos 65, 103–115. Tennant D. 1975. A test of a modified line intersect method of estimating root length. Journal of Ecology 63, 996–1001. http://dx.doi.org/10.2307/2258617
Vernon A., Allison, J. 1963. A Method of Calculating Net Assimilation Rate. Nature 200, 814. https://doi.org/10.1038/200814a0
Vervaeke F., Schrevens E., Verreydt J. Portier K., De Baerdemaeker J.. 1994. The use of digitized video images for monitoring color and color evolution of Jonagold apples during shelf life. [W] Yano, T.; Matsuno, R.; Nakamura, K., (red.). Proceedings of the sixth international congress on engineering and food; 1993 May 23–27, Blackie Academic and Professional., Chiba, Japan. London, UK, 200–202. https://doi.org/10.1007/9781-4615-2674-2_59
Woebbecke D.M., Meyer G.E., Von Bargen K., Mortensen D.A. 1995. Color indices for weed identification under various soil, residue, and lighting conditions. Transactions of the ASAE. 38, 259–269. Zhang N. Chaisattapagon C. 1995. Effective criteria for weed identification in wheat fields using machine vision. Transactions of the ASA 38, 965–974. https://doi.org/10.13031/2013.27914
Zhang M., De Baerdemaeker J., Schrevens E. 2003. Effects of different varieties and shelf storage conditions of chicory on deteriorative color changes using digital image processing and analysis. Food Research International 36, 669–676. https://doi.org/10.1016/S0963-9969(03)00015-2
Downloads
Published
Issue
Section
Stats
Number of views and downloads: 22
Number of citations: 0
