Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

KOSMOS

Halotolerant bacteria as plant allies in the fight against soil salinity stress
  • Home
  • /
  • Halotolerant bacteria as plant allies in the fight against soil salinity stress
  1. Home /
  2. Archives /
  3. Vol. 74 No. 2 (346) (2025): Plants and People – A Shared History, a Shared Future /
  4. Articles

Halotolerant bacteria as plant allies in the fight against soil salinity stress

Authors

  • Aleksandra Junkier Laboratory of Agricultural and Industrial Microbiology, Institute of Bioengineering, Faculty of Biology, University of Warsaw
  • Aleksandra Goszcz Laboratory of Agricultural and Industrial Microbiology, Institute of Bioengineering, Faculty of Biology, University of Warsaw
  • Agnieszka Mroczek Laboratory of Agricultural and Industrial Microbiology, Institute of Bioengineering, Faculty of Biology, University of Warsaw https://orcid.org/0000-0002-1677-9413
  • Klaudia Dębiec-Andrzejewska Laboratory of Agricultural and Industrial Microbiology, Institute of Bioengineering, Faculty of Biology, University of Warsaw https://orcid.org/0000-0002-3214-0732

DOI:

https://doi.org/10.12775/KOSMOS.2025.014

Keywords

soil salinity, bioremediation in situ, halotolerant bacteria, osmoprotectants, osmotic stress, soil quality improvement, soil microorganisms

Abstract

Soil salinity is one of the most pressing challenges in contemporary agriculture, resulting in reduced crop productivity and degradation of soil ecosystems. The adverse effects of salinity include disruptions in plant water and ion balance, osmotic stress, and limited nutrient availability. In response to these challenges, there is increasing interest in biological soil remediation (bioremediation) approaches, particularly those employing halotolerant microorganisms. These microbes, capable of thriving under saline conditions, synthesize osmoprotectants - compounds that support plant tolerance to stress while simultaneously enhancing the physicochemical and microbiological properties of soils. This study explores the role of halotolerant bacteria in improving the availability of macro- and micronutrients, promoting biofilm formation, and protecting plants from the toxic effects of excessive dissolved ions. The presented research underscores the significant application potential of microbial-based remediation strategies as effective, eco-friendly, and economically sustainable solutions for improving crop resilience under salinity stress.

References

Abed, R. M., Al-Kharusi, S., Al-Hinai, M., 2015. Effect of biostimulation, temperature and salinity on respiration activities and bacterial community composition in an oil polluted desert soil. International Biodeterioration & Biodegradation, 98, 43–52. https://doi.org/10.1016/j.ibiod.2014.11.018

AbuQamar, S. F., El-Saadony, M. T., Saad, A. M., Desoky, E. M., Elrys, A. S., i in., 2024. Halotolerant plant growth-promoting rhizobacteria improve soil fertility and plant salinity tolerance for sustainable agriculture – A review. Plant Stress, 12, 100482. https://doi.org/10.1016/j.stress.2024.100482

Ahsan, Y., Qurashi, A.W., Liaqat, I., Latif, A., Afzaal, M., i in., 2023. Efficacy of rice husk and halophilic bacterial biofilms in the treatment of saline water. Journal of Basic Microbiology 63, 855–867. https://doi.org/10.1002/jobm.202300062b

Al-Awad, K., 2018. The effect of biological exudates on the mechanical properties of granular soil. Ph.D. Dissertation, Cardiff University. Ambreen, S., Athar, H.-U.-R., Khan, A., Zafar, Z.U., Ayyaz, A., i in., 2021. Seed priming with proline improved photosystem II efficiency and growth of wheat (Triticum aestivum L.). BMC Plant Biology 21, 502. https://doi.org/10.1186/s12870-021-03273-2

Arora, S., Vanza, M.J., Mehta, R., Bhuva, C., Patel, P.N., 2014. Halophilic microbes for bio-remediation of salt affected soils. African Journal of Microbiology Research 8, 3070-3080. https://doi.org/10.5897/AJMR2014.6960

Aparicio, J. D., Raimondo, E. E., Saez, J. M., Costa-Gutierrez, S. B., Álvarez, i in., 2022. The current approach to soil remediation: A review of physicochemical and biological technologies, and the potential of their strategic combination. Journal of Environmental Chemical Engineering, 10(2), 107141. https://doi.org/10.1016/j.jece.2022.107141

Chizhevskaya, E.P., Baganova, M. E., Keleinikova, O.V., Yuzikhin, O.S., Zaplatkin, A.N., i in., 2022. Endophytes from halotolerant plants aimed to overcome salinity and drought. Plants 11, 2992. https://doi.org/10.3390/plants11212992

Cirillo, V., Masin, R., Maggio, A., Zanin, G., 2018. Crop-weed interactions in saline environments. European Journal of Agronomy, 99, 51–61. https://doi.org/10.1016/j.eja.2018.06.009

du Jardin, P., 2015. Plant biostimulants: definition, concept, main categories and regulation. Sci. Hortic. 196, 3–14. https://doi.org/10.1016/j.scienta.2015.09.021

Elbein, A.D., Pan, Y.T., Pastuszak, I., 2003. New insights on trehalose: a multifunctional molecule. Glycobiology 13, 17R–27R. https://doi.org/10.1093/glycob/cwg047

Etesami, H., Beattie, G. A., 2018. Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Frontiers in Microbiology, 9, 148. https://doi.org/10.3389/fmicb.2018.00148

Gliniak, M., Sobczyk, W., 2013. Antropogeniczne procesy zasolenia gleb. J. Educ. Technol. Comput. Sci. 7, 271–277. https://journals.ur.edu.pl/jetacomps/article/view/6844

Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., i in., 2010. Food security: the challenge of feeding 9 billion people. Science 327, 812–818. https://doi.org/10.1126/science.1185383

Goszcz, A., Furtak, K., Stasiuk, R., Wójto- wicz, J., Musiałowski, i in. ., 2025. Bacterial osmoprotectants – a way to survive in saline conditions and potential crop allies. FEMS Microbiology Reviews 49, https://doi.org/10.1093/femsre/fuaf020

Guo, Y.-S., Furrer, J. M., Kadilak, A. L., Hinestroza, H. F., Gage, D. J., i in. (2018). Bacterial extracellular polymeric substances amplify water content variability at the pore scale. Frontiers in Environmental Science and Engineering China, 6. https://doi.org/10.3389/fenvs.2018.00093

Hulisz, P., 2007. Wybrane aspekty badań gleb zasolonych w Polsce. Stow. Oświat. Pol. http://www.sop.torun.pl (dostęp 17 lipca 2025)

Hulisz, P., Piernik, A., Mantilla-Contreras, J., Elvisto, T., 2016. Main driving factors for seacoast vegetation in the southern and eastern Baltic. Wetlands 36, 909–919. https://doi.org/10.1007/s13157-016-0803-2

Hulisz P., 2016. Costal Marsh soils in Poland: characteristics and problems of classification. Soil Science Annual, 67, 1, 37–44, https://doi.org/10.1515/ssa-2016-0006

Ji, X., Tang, J., Zhang, J., 2022. Effects of salt stress on the morphology, growth and physiological parameters of Juglans microcarpa L. seedlings. Plants 11, 2381. https://doi.org/10.3390/plants11182381

Kalantary, R. R., Mohseni-Bandpi, A., Esrafili, A., Nasseri, S., Ashmagh, F. R., i in ., 2014. Effectiveness of biostimulation through nutrient content on the bioremediation of phenanthrene contaminated soil. Journal of Environmental Health Science and Engineering, 12, 143. https://doi.org/10.1186/s40201-014-0143-1

Kalwasińska, A., Hulisz, P., Szabó, A., Binod Kumar, S., Michalski, A., i in., 2023. Technogenic soil salinisation, vegetation, and management shape microbial abundance, diversity, and activity. Science of The Total Environment, 905, 167380. https://doi.org/10.1016/j.scitotenv.2023.167380

Kaya, C., Tuna, A.L., Yokaş, I., 2009. The role of plant hormones in plants under salinity stress. W: Ashraf, M. Ozturk, H. Athar (Red.), Salinity and Water Stress. Tasks for Vegetation Sciences, vol. 44. Springer, Dordrecht, s. 5–27. https://doi.org/10.1007/978-1-40209065-3_5

Kido, É.A., Ferreira-Neto, J.R.C., da Silva, M.D., 2019. Osmoprotectant-related genes in plants under abiotic stress: expression dynamics, in silico genome mapping, and biotechnology, w: Hossain, M. A., Kumar, V., Burritt, D. J., Fujita, M., Mäkelä, P. S. A. (Red.), Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants: Recent Advances and Future Perspectives. Springer, Berlin, s. 1–40. https://doi.org/10.1007/978-3-030-27423-8_1

Klouche, F., Bendani, K., Benamar, A., Missoum, H., Maliki, M., i in., 2019 . Electrokinetic restoration of local saline soil. Materials Today: Proceedings, 22, 64–68. https://doi.org/10.1016/j.matpr.2019.08.082

Koul, B., Taak, P., 2018. Soil remediation through microbes, w: Biotechnological Strategies for Effective Remediation of Polluted Soils. Springer, Singapore. https://doi.org/10.1007/978-981-13-2420-8_6

Kuppan, N., Padman, M., Mahadeva, M., Srinivasan, S., Devarajan, R. 2024. A comprehensive review of sustainable bioremediation techniques: Eco friendly solutions for waste and pollution management. Waste Management Bulletin, 2, 154–171. https://doi.org/10.1016/j.wmb.2024.07.005

Litalien, A., Zeeb, B., 2020. Curing the earth: A review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation. Sci. Total Environ. 698, 134235. https://doi.org/10.1016/j.scitotenv.2019.134235

Lebrun, M., Száková, J., Drábek, O., Tejnecký, V., Hough, i in., 2023. EDTA as a legacy soil chelatant: A comparative study to a more environmentally sensitive alternative for metal removal by Pistia stratiotes L. Environmental Science and Pollution Research International, 30(29), 74314. https://doi.org/10.1007/s11356-023-27537-6

Lee, K. C., Archer, S. D., Kansour, M. K., AlMailem, D. M., 2024 . Bioremediation of oily hypersaline soil via autochthonous bioaugmentation with halophilic bacteria and archaea. Science of The Total Environment, 922, 171279. https://doi.org/10.1016/j.scitotenv.2024.171279

Liu, J., Wu, L., Gong, L., Wu, Y., Tanentzap, A. J., 2023. Phototrophic biofilms transform soildissolved organic matter similarly despite compositional and environmental differences. Environmental Science & Technology 57, 4679–4689. https://doi.org/10.1021/acs.est.2c08541

Mäkelä, P., Kontturi, M., Pehu, E., & Somersalo, S. 1999. Photosynthetic response of drought‐ and salt‐stressed tomato and turnip rape plants to foliar‐applied glycinebetaine. Physiologia Plantarum, 105, 45–50. https://doi.org/10.1034/j.1399-3054.1999.105108.x

Misra, N., Saxena, P., 2009. Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Science 177, 181–189. https://doi.org/10.1016/j.plantsci.2009.05.007

Ludwiczak, A., Osiak, M., Piernik, A., 2021. Osmotic stress or ionic composition: which affects the early growth of crop species more? Agronomy 11(3), 435. https://doi.org/10.3390/agronomy11030435

Meng, X., Zhou, J., Sui, N., 2018. Mechanisms of salt tolerance in halophytes: current understanding and recent advances. Open Life Sciences 13, 149. https://doi.org/10.1515/biol-2018-0020

Michael-Igolima, U., Abbey, S. J., Ifelebuegu, A. O. 2022. A systematic review on the effectiveness of remediation methods for oil contaminated soils. Environmental Advances, 9, 100319. https://doi.org/10.1016/j.envadv.2022.100319

Mishra, P.K., Joshi, S., Gangola, S., Khati, P., Bisht, J.K., i in., 2020. Psychrotolerant microbes: characterization, conservation, strain improvements, mass production, and commercialization, w: Singh, H., (Red.), Cold-Adapted Microorganisms for Sustainable Crop Production. Springer, Singapore, s. 227–246. https://doi.org/10.1007/978-981-15-1902-4_12

Mohanavelu, A., Raghavendra Naganna, S., AlAnsari, N., 2021. Irrigation induced salinity and sodicity hazards on soil and groundwater: an overview of its causes, impacts and mitigation strategies. Agriculture 11(12), 1196. https://doi.org/10.3390/agriculture11121196

Nadeem, M., Ali, M., Kubra, G., Fareed, A., Hasan, H., i in., 2020. Role of osmoprotectants in salinity tolerance in wheat. Climate Change and Food Security With Emphasis on Wheat, 93–106. https://doi.org/10.1016/B978-0-12-819527-7.00006-6

Nakayama, H., Yoshida, K., Ono, H., Murooka, Y., Shinmyo, A., 1993. Ectoine, the compatible solute of Halomonas elongata, confers hyperosmotic tolerance in cultured tobacco cells. Plant Physiol. 101, 441–445. https://doi.org/10.1104/pp.101.1.441

Navarro-Torre, S., Ferrario, S., Caperta, A. D., Victorino, G., Bailly, M., i in., 2023. Halotolerant endophytes promote grapevine regrowth after salt-induced defoliation. Journal of Plant Interactions 18. https://doi.org/10.1080/17429145.2023.2215235

Oviedo, C., Rodríguez, J., 2003. EDTA: the chelating agent under environmental scrutiny. Química Nova 26, 901–905.

Panuszko, A., Bruździak, P., Kaczkowska, E., Stangret, J. 2016. General mechanism of osmolytes’ influence on protein stability irrespective of the type of osmolyte cosolvent. Journal of Physical Chemistry B, 120, 11159–11169. https://doi.org/10.1021/acs.jpcb.6b10119

Piernik, A., Hulisz, P., 2011. Soil-plant relations in inland and anthropogenic saline habitats. European Journal of Plant Science and Biotechnology 5, 37–43. Roberts, M. F., 2005. Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Systems, 1, 5. https://doi.org/10.1186/1746-1448-1-5

Roy, D., Sleator, C., 2002. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiology Reviews 26(1), 49–71. https://doi.org/10.1111/j.1574-6976.2002.tb00598.x

Schiraldi, C., De Rosa, M., 2014. Mesophilic organisms, w: Drioli, E., Giorno, L. (Red.), Encyclopedia of Membranes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3642-40872-4_1610-2

Sedlacek, P., Slaninova, E., Koller, M., Nebesarova, J., Marova, I., i in., 2019. PHA granules help bacterial cells to preserve cell integrity when exposed to sudden osmotic imbalances. New Biotechnology 49, 129–136. https://doi.org/10.1016/j.nbt.2018.10.005

Shaygan, M., Baumgartl, T. 2022. Reclamation of Salt-Affected Land: A Review. Soil Systems, 6, 61. https://doi.org/10.3390/soilsystems6030061

Shrivastava, P., Kumar, R., 2015. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 22(2), 123–131. https://doi.org/10.1016/j.sjbs.2014.12.001

Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., García-Caparros, P., i in., 2015. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany 115, 433–447. https://doi.org/10.1093/aob/mcu239

Sleator, R. D., Hill, C. 2002. Bacterial osmoadaptation: The role of osmolytes in bacterial stress and virulence. FEMS Microbiology Reviews, 26(1), 49–71. https://doi.org/10.1111/j.1574-6976.2002.tb00598.x

Stavi, I., Thevs, N., Priori, S., 2021. Soil salinity and sodicity in drylands: a review of causes, effects, monitoring, and restoration measures. Frontiers in Environmental Science 9, 712831. https://doi.org/10.3389/fenvs.2021.712831

Tang, H., Xiang, G., Xiao, W., Yang, Z., Zhao, B. 2024. Microbial mediated remediation of heavy metals toxicity: Mechanisms and future prospects. Frontiers in Plant Science, 15, 1420408. https://doi.org/10.3389/fpls. 2024.1420408

Torbaghan, M.E., Lakzian, A., Astaraei, A.R., Fotovat, A., Besharati, H., 2017. Salt and alkali stresses reduction in wheat by plant growth promoting haloalkaliphilic bacteria. Journal of Soil Science and Plant Nutrition 17(4), 1058–1087. https://doi.org/10.4067/ S0718-95162017000400016

Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M., & Ali, S. Z. 2016. Enhancement of drought stress tolerance in crops by plant growth-promoting rhizobacteria. Microbiological Research, 184, 13–24. https://doi.org/10.1016/j.micres.2015.12.003

Zheng, Y., Li, Z., Tan, Z., Liu, Y., Zhang, X., i in., 2025. Iron (II)-EDTA alleviate salinity injury through regulating ion balance in halophyte seashore paspalum. Grass Research 5, e002. https://doi.org/10.48130/grares-0024-0029

Yan, S., Chong, P., Zhao, M., 2022. Effect of salt stress on the photosynthetic characteristics and endogenous hormones, and: A comprehensive evaluation of salt tolerance in Reaumuria soongorica seedlings. Plant Signal. Behav. 17(1), 2031782. https://doi.org/10.1080/15592324.2022.2031782

Yamada, N., Promden, W., Yamane, K., Tamagake, H., Hibino, T., i in., 2009. Preferential accumulation of betaine uncoupled to choline monooxygenase in young leaves of sugar beet–importance of long-distance translocation of betaine under normal and salt-stressed conditions. Journal of Plant Physiology 166, 2058–2070. https://doi.org/10.1016/j.jplph.2009.06.016

KOSMOS

Downloads

  • PDF (Język Polski)

Published

2025-06-30

Issue

Vol. 74 No. 2 (346) (2025): Plants and People – A Shared History, a Shared Future

Section

Articles

License

Copyright (c) 2026 KOSMOS

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Stats

Number of views and downloads: 15
Number of citations: 0

Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop