Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

KOSMOS

Phytochemical phenomenon – rosmarinic acid and its potential
  • Home
  • /
  • Phytochemical phenomenon – rosmarinic acid and its potential
  1. Home /
  2. Archives /
  3. Vol. 74 No. 3 (347) (2025): Plants and people – a shared history, a shared future. A new perspective. /
  4. Articles

Phytochemical phenomenon – rosmarinic acid and its potential

Authors

  • Mateusz Waluś Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw
  • Alicja Sobkowiak Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw https://orcid.org/0000-0003-4879-1254
  • Danuta Solecka Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw https://orcid.org/0000-0002-0969-7209

DOI:

https://doi.org/10.12775/KOSMOS.2025.025

Keywords

agriculture, food industry, in vitro plant cultures, medicine, polyphenols, rosmarinic acid

Abstract

Rosmarinic acid (KR) is a polyphenol present in many plants of the light family (Lamiaceae), such as rosemary, sage, lemon balm and mint. Due to its chemical structure, it exhibits a wide spectrum of biological activities. The article presents a literature review of its applications in medicine, cosmetics and other fields, including industrial. Special attention was paid to its anti-inflammatory, antioxidant, neuroprotective, anticancer, antimicrobial and immunomodulatory properties. The potential use of KR in the treatment of many diseases, in cosmetology (use in skin care and sun protection), in the food industry (natural preservative), and in agriculture (biopesticide and biostimulant) is shown. The article also discusses modern methods of biotechnological production of KR, including cultures in vitro. The results of preclinical studies are very promising, but further research is needed on the efficacy and safety of KR in humans. The chemical has the potential to become an important ingredient in adjunctive therapies, dietary supplements, cosmetics and organic plant protection products.

References

Alagawany, M., Abd El-Hack, M.E., Farag, M.R., Gopi, M., Karthik, K., i in. 2017. Rosmarinic acid: modes of action, medicinal values and health benefits. Animal Health Research Reviews, 182, 167–176. https://doi.org/10.1017/s1466252317000081

Bacenetti, J., Cavaliere, A., Falcone, G., Giovenzana, V., Banterle, A., i in., 2018. Shelf life extension as solution for environmental impact mitigation: A case study for bakery products. Science of the Total Environment, 627, 997–1007. https://doi.org/10.1016/j.scitotenv.2018.01.301

Balachander, G.J., Subramanian, S., Ilango, K. 2018. Rosmarinic acid attenuates hepatic steatosis by modulating ER stress and autophagy in oleic acid-induced HepG2 cells. RSC Advances, 847, 26656–26663. https://doi.org/10.1039/c8ra02849d

Bian, J., Wu, T., Zhou, Q., Xie, H., Chen, C., 2023. Silane-coupled chitosan-cyclodextrin/rosmarinic acid-zinc complex coating improves the osseointegration of titanium implants in high-glucose environments. Applied Surface Science, 638, 158015. https://doi.org/10.1016/j.apsusc.2023.158015

Brown, L. 2022. Acne and its management – an update. SA Pharmaceutical Journal, 894, 30–38.

Burkard, M., Piotrowsky, A., Leischner, C., Detert, K., Venturelli, S., i in., 2025. The Antiviral Activity of Polyphenols. Molecular Nutrition and Food Research, e70042. https://doi.org/10.1002/mnfr.70042

Cai, G., Lin, F., Wu, D., Lin, C., Chen, H., i in., 2022. Rosmarinic acid inhibits mitochondrial damage by alleviating unfolded protein response. Frontiers in Pharmacology, 13, 859978. https://doi.org/10.3389/fphar.2022.859978

Caliari, S.R., Burdick, J.A., 2016. A practical guide to hydrogels for cell culture. Nature Methods, 135, 405–414. https://doi.org/10.1038/nmeth.3839

Cândido, T.M., Ariede, M.B., Pinto, C.A.S.D.O., Lourenço, F.R., Rosado, C., i in., 2022. Prospecting in vitro antioxidant and photoprotective properties of rosmarinic acid in a sunscreen system developed by QbD containing octyl p-methoxycinnamate and bemotrizinol. Cosmetics, 92, 29. https://doi.org/10.3390/cosmetics9020029

Casanova, F., Estevinho, B.N., Santos, L., 2016. Preliminary studies of rosmarinic acid microencapsulation with chitosan and modified chitosan for topical delivery. Powder Technology, 297, 44–49. https://doi.org/10.1016/j.powtec.2016.04.014

Chajra, H., Nadim, M., Auriol, D., Schweikert, K., Lefevre, F., 2015. Combination of new multifunctional molecules for erythematotelangiectatic rosacea disorder. Clinical, Cosmetic and Investigational Dermatology, 501–510. https://doi.org/10.2147/ccid.s92326

Chhabra, P., Chauhan, G., Kumar, A., 2020. Augmented healing of full thickness chronic excision wound by rosmarinic acid loaded chitosan encapsulated graphene nanopockets. Drug Development and Industrial Pharmacy, 466, 878-888. https://doi.org/10.1080/03639045.2020.1762200

Chircov, C., Pîrvulescu, D.C., Bîrcă, A.C., Andronescu, E., Grumezescu, A.M., 2022. Magnetite microspheres for the controlled release of rosmarinic acid. Pharmaceutics, 1411, 2292. https://doi.org/10.3390/pharmaceutics14112292

Contardi, M., Lenzuni, M., Fiorentini, F., Summa, M., Bertorelli, R., i in., 2021. Hydroxycinnamic acids and derivatives formulations for skin damages and disorders: A review. Pharmaceutics, 137, 999. https://doi.org/10.3390/pharmaceutics13070999

Cuevas-Durán, R.E., Medrano-Rodríguez, J.C., Sánchez-Aguilar, M., Soria-Castro, E., Rubio-Ruíz, M.E., i in., 2017. Extracts of Crataegus oxyacantha and Rosmarinus officinalis attenuate ischemic myocardial damage by decreasing oxidative stress and regulating the production of cardiac vasoactive agents. International Journal of Molecular Sciences, 1811, 2412. https://doi.org/10.3390/ijms18112412

Czerwińska, K., Radziejewska, I., 2024. Rosmarinic acid: A potential therapeutic agent in gastrointestinal cancer management – A review. International Journal of Molecular Sciences, 2521, 11704 https://doi.org/10.3390/ijms252111704

da Silva, S.B., Ferreira, D., Pintado, M., Sarmento, B., 2016. Chitosan-based nanoparticles for rosmarinic acid ocular delivery—In vitro tests. International Journal of Biological Macromolecules, 84, 112–120. https://doi.org/10.1016/j.ijbiomac.2015.11.070

Dagostin, S., Formolo, T., Giovannini, O., Pertot, I., Schmitt, A., 2010. Salvia officinalis extract can protect grapevine against Plasmopara viticola. Plant Disease, 945, 575–580. https://doi.org/10.1094/pdis-94-5-0575

Del Bano, M.J., Lorente, J., Castillo, J., Benavente-García, O., Del Rio, J.A. i in., 2003. Phenolic diterpenes, flavones, and rosmarinic acid distribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis. Antioxidant activity. Journal of Agricultural and Food Chemistry, 51(15), 4247–4253. https://doi.org/10.1021/jf0300745

Duan, L., Rao, X., Sigdel, K. R., 2019. Regulation of inflammation in autoimmune disease. Journal of Immunology Research, 2019, 7403796. https://doi.org/10.1155/2019/7403796

Dunan, L., Malanga, T., Benhamou, S., Papaiconomou, N., Desneux, N., i in., 2023. Effects of essential oil-based formulation on biopesticide activity. Industrial Crops and Products, 202, 117006. https://doi.org/10.1016/j.indcrop.2023.117006

Ekambaram, S.P., Perumal, S.S., Balakrishnan, A., Marappan, N., Gajendran, S.S., i in., 2016. Antibacterial synergy between rosmarinic acid and antibiotics against methicillin-resistant Staphylococcus aureus. Journal of Intercultural Ethnopharmacology, 54, 358. https://doi.org/10.5455/jice.20160906035020

El-Lakkany, N.M., El-Maadawy, W.H., El-Din, S.H.S., Hammam, O.A., Mohamed, S.H., i in., 2017. Rosmarinic acid attenuates hepatic fibrogenesis via suppression of hepatic stellate cell activation/proliferation and induction of apoptosis. Asian Pacific Journal of Tropical Medicine, 105, 444–453. https://doi.org/10.1016/j.apjtm.2017.05.012

Elebeedy, D., Elkhatib, W.F., Kandeil, A., Ghanem, A., Kutkat, O., i in., 2021. Anti-SARS-CoV-2 activities of tanshinone IIA, carnosic acid, rosmarinic acid, salvianolic acid, baicalein, and glycyrrhetinic acid between computational and in vitro insights. RSC Advances, 1147, 29267–29286. https://doi.org/10.1039/d1ra05268c

Faridzadeh, A., Salimi, Y., Ghasemirad, H., Kargar, M., Rashtchian, A., i in., 2022. Neuroprotective potential of aromatic herbs: rosemary, sage, and lavender. Frontiers in Neuroscience, 16, 909833. https://doi.org/10.3389/fnins.2022.909833

Fecka, I., Mazur, A., Cisowski, W., 2002. Rosmarinic acid, an important therapeutic component of some herbal crude drugs. Postępy Fitoterapii, 1–2: 20–25

Fiume, M.M., Bergfeld, W.F., Belsito, D.V., Hill, R.A., Klaassen, C.D., i in., 2018. Safety assessment of Rosmarinus officinalis rosemary-derived ingredients as used in cosmetics. International Journal of Toxicology, 373_suppl, 12S–50S. https://doi.org/10.1177/1091581818800020

Fletcher, R.S., Slimmon, T., Kott, L.S. 2010. Environmental factors affecting the accumulation of rosmarinic acid in spearmint Mentha spicata L. and peppermint Mentha piperita L.. The Open Agriculture Journal, 41. https://doi.org/10.2174/1874331501004010010

Freitas, L.P. 2021. Analysis of antifungal plant extracts against phytopathogenic fungi. Master's thesis, Universidade do Minho Portugal.

Ge, L., Zhu, M., Li, X., Xu, Y., Ma, X., i in., 2018. Development of active rosmarinic acid-gelatin biodegradable films with antioxidant and long-term antibacterial activities. Food Hydrocolloids, 83, 308–316. https://doi.org/10.1016/j.foodhyd.2018.04.052

Ghasemzadeh Rahbardar, M., Hosseinzadeh, H., 2020. Effects of rosmarinic acid on nervous system disorders: an updated review. Naunyn-Schmiedeberg's Archives of Pharmacology, 39310, 1779–1795. https://doi.org/10.1007/s00210-020-01935-w

Ghobril, C., Grinstaff, M.W., 2015. The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial. Chemical Society Reviews, 447, 1820–1835. https://doi.org/10.1039/c4cs00332b

Gonçalves S., Mansinhos I., Rodríguez-Solana R., Efrén Pérez-Santín E., Coelho N., i in., 2019. Elicitation improves rosmarinic acid content and antioxidant activity in Thymus lotocephalus shoot cultures. Industrial Crop and Products 137:214–220. https://doi.org/10.1016/j.indcrop.2019.04.071

Grąbkowska, R., Krzemińska, M., Gaweda-Walerych, K., Kiss, A. K., Pluta, K., i in., 2025. Enhancement of Rosmarinic Acid Production in Hairy Root Cultures of Perovskia atriplicifolia Benth. International Journal of Molecular Sciences, 267, 3187. https://doi.org/10.3390/ijms26073187

Greff, B., Sáhó, A., Lakatos, E., Varga, L., 2023. Biocontrol activity of aromatic and medicinal plants and their bioactive components against soil-borne pathogens. Plants, 124, 706. https://doi.org/10.3390/plants12040706

Guan, H., Luo, W., Bao, B., Cao, Y., Cheng, F., i in., 2022. A comprehensive review of rosmarinic acid: from phytochemistry to pharmacology and its new insight. Molecules, 2710, 3292. https://doi.org/10.3390/molecules27103292

Guncheva, M., Todinova, S., Yancheva, D., Idakieva, K., 2020. Rosmarinic acid-conjugated hemocyanins: synthesis and stability. Journal of Thermal Analysis and Calorimetry, 142, 1903–1909. https://doi.org/10.1007/s10973-020-09738-0

Gupta, D., Sharma, R.R., Rashid, H., Bhat, A.M., Tanveer, M.A., i in., 2023. Rosmarinic acid alleviates ultraviolet‐mediated skin aging via attenuation of mitochondrial and ER stress responses. Experimental Dermatology, 326, 799–807. https://doi.org/10.1111/exd.14773

Han, J., Wang, D., Ye, L., Li, P., Hao, W., i in., 2017. Rosmarinic acid protects against inflammation and cardiomyocyte apoptosis during myocardial ischemia/reperfusion injury by activating peroxisome proliferator-activated receptor gamma. Frontiers in Pharmacology, 8, 456. https://doi.org/10.3389/fphar.2017.00456

Hao, W., Friedman, A., 2016. Mathematical model on Alzheimer’s disease. BMC Systems Biology, 10, 1–18. https://doi.org/10.1186/s12918-016-0348-2

Hitl, M., Kladar, N., Gavarić, N., Božin, B., 2021. Rosmarinic acid–human pharmacokinetics and health benefits. Planta Medica, 8704, 273–282. https://doi.org/10.1055/a-1301-8648

Huang, J.Y., Hsu, T.W., Chen, Y.R., Kao, S.H., 2024. Rosmarinic acid potentiates cytotoxicity of cisplatin against colorectal cancer cells by enhancing apoptotic and ferroptosis. Life, 148, 1017 https://doi.org/10.3390/life14081017

Huang, S.S., Zheng, R.L. 2006. Rosmarinic acid inhibits angiogenesis and its mechanism of action in vitro. Cancer Letters, 2392, 271–280. https://doi.org/10.1016/j.canlet.2005.08.025

Huerta-Madronal, M., Caro-Leon, J., Espinosa-Cano, E., Aguilar, M. R., Vázquez-Lasa, B., 2021. Chitosan–Rosmarinic acid conjugates with antioxidant, anti-inflammatory and photoprotective properties. Carbohydrate Polymers, 273, 118619. https://doi.org/10.1016/j.carbpol.2021.118619

Hur, Y.G., Suh, C.H., Kim, S., Won, J., 2007. Rosmarinic acid induces apoptosis of activated T cells from rheumatoid arthritis patients via mitochondrial pathway. Journal of Clinical Immunology, 27, 36–45. https://doi.org/10.1007/s10875-006-9057-8

Hussein, A.S., Senosi, Y.A., Mahfouz, M.K., Arafa, M.M., Hassan, M.F. 2024. Epigenetic impact and ameliorative potential role of quercetin or rosemary extract on metalaxy or manganese chloride-induced toxicity via mitigation of microRNA, DNA methylation and regulation of MAPK phosphorylation in rats. Journal of Advanced Veterinary Research, 147, 1160–1167. https://doi.org/10.21608/bvmj.2017.30600

Jahanian, H., Kahkeshani, N., Sanei-Dehkordi, A., Isman, M. B., Saeedi, M., i in., 2024. Rosmarinus officinalis as a natural insecticide: a review. International Journal of Pest Management, 704, 818–863. https://doi.org/10.1080/09670874.2022.2046889

Jeong, M.J., Lim, D.S., Kim, S.O., Park, C., Choi, Y.H., i in., 2021. Effect of rosmarinic acid on differentiation and mineralization of MC3T3-E1 osteoblastic cells on titanium surface. Animal Cells and Systems, 251, 46–55. https://doi.org/10.1080/19768354.2021.1886987

Jheng, J.R., Hsieh, C.F., Chang, Y H., Ho, J.Y., Tang, W.F., i in., 2022. Rosmarinic acid interferes with influenza virus A entry and replication by decreasing GSK3β and phosphorylated AKT expression levels. Journal of Microbiology, Immunology and Infection, 554, 598–610. https://doi.org/10.1016/j.jmii.2022.04.012

Kalvala, A.K., Kumar, A.V., Chayanika, G., Bhoomika, S., Rahul, K., i in., 2021. Rosmarinic acid and mitochondria. w: Marcos Roberto de Oliveira (red.) Mitochondrial Physiology and Vegetal Molecules pp. 209–231. Academic Press. https://doi.org/10.1016/b978-0-12-821562-3.00030-7

Kasamatsu, S., Takano, K., Aoki, M., Takahashi, Y., Suzuki, T., 2024. Rosemary extract and rosmarinic acid accelerate elastic fiber formation by increasing the expression of elastic fiber components in dermal fibroblasts. The Journal of Dermatology, 516, 816–826. https://doi.org/10.1111/1346-8138.17185

Khoshsokhan, F., Babalar, M., Salami, S. A., Sheikhakbari-Mehr, R., Mirjalili, M. H., 2022. Rosmarinic acid production in hairy root cultures of Salvia nemorosa L. Lamiaceae. Biocatalysis and Agricultural Biotechnology, 45, 102494. https://doi.org/10.1016/j.bcab.2022.102494

Kim, B. R., Jeong, Y. J., Kim, S., Kim, S. B., Lee, J., i in., 2025. Elicitor-mediated enhancement of rosmarinic acid biosynthesis in cell suspension cultures of Lavandula angustifolia and in vitro biological activities of cell extracts. Plant Physiology and Biochemistry, 109896. https://doi.org/10.1016/j.plaphy.2025.109896

Kim, G.D., Park, Y.S., Jin, Y.H., Park, C.S., 2015. Production and applications of rosmarinic acid and structurally related compounds. Applied Microbiology and Biotechnology, 99, 2083–2092. https://doi.org/10.1007/s00253-015-6395-6

Kim, H.J., Kim, T.H., Kang, K.C., Pyo, H.B., Jeong, H.H., 2010. Microencapsulation of rosmarinic acid using polycaprolactone and various surfactants. International Journal of Cosmetic Science, 323, 185–191. https://doi.org/10.1111/j.1468-2494.2010.00526.x

Kim, T.H., Bormate, K.J., Custodio, R.J.P., Cheong, J.H., Lee, B.K., i in., 2022. Involvement of the adenosine A1 receptor in the hypnotic effect of rosmarinic acid. Biomedicine and Pharmacotherapy, 146, 112483. https://doi.org/10.1016/j.biopha.2021.112483

Kłos, P., Chlubek, D., 2022. Plant-derived terpenoids: A promising tool in the fight against melanoma. Cancers, 143, 502. https://doi.org/10.3390/cancers14030502

Koch, W., Zagórska, J., Michalak-Tomczyk, M., Karav, S., Wawruszak, A., 2024. Plant Phenolics in the Prevention and Therapy of Acne: A Comprehensive Review. Molecules, 2917, 4234. https://doi.org/10.3390/molecules29174234

Kozłowska, W., Piątczak, E., Kolniak-Ostek, J., Kochan, E., Pencakowski, B., i in., 2024. Upscaling biomass production of rosmarinic acid-rich hairy root cultures of Agastache rugosa Fisch. i CA Mey. Kuntze. Plant Cell, Tissue and Organ Culture (PCTOC), 1562, 41. https://doi.org/10.1007/s11240-023-02626-z

Krszyna, K., Stoklosa, T., 2005. Czynnik indukowany przez hipoksje-1 [HIF-1]: Budowa, regulacja ekspresji, funkcja oraz rola w progresji nowotworów. Postępy Biologii Komórki, 32, 707–728.

Kumari, R., Vaid, P., 2024. Prospects of medicinal plants and plant compounds as anti-human herpes virus drugs. w: Akhtar N., Husen A., Dvibedi V., Rath SK., (Red.) Promising Antiviral Herbal and Medicinal Plants pp. 231-241. CRC Press. https://doi.org/10.1201/9781003329169-15

Kurkin, V.A., 2013. Phenylpropanoids as the biologically active compounds of the medicinal plants and phytopharmaceuticals. Advances in Biological Chemistry, 31, 26-28. https://doi.org/10.4236/abc.2013.31004

Lešnik, S., Furlan, V., Bren, U., 2021. Rosemary Rosmarinus officinalis L.: extraction techniques, analytical methods and health-promoting biological effects. Phytochemistry Reviews, 206, 1273–1328. https://doi.org/10.1007/s11101-021-09745-5

Lin, L., Dong, Y., Zhao, H., Wen, L., Yang, B., i in., 2011. Comparative evaluation of rosmarinic acid, methyl rosmarinate and pedalitin isolated from Rabdosia serra MAXIM. HARA as inhibitors of tyrosinase and α-glucosidase. Food Chemistry, 1293, 884–889. https://doi.org/10.1016/j.foodchem.2011.05.039

Liu, M., Liu, S., Zhu, X., Sun, Y., Su, L., i in., 2022. Tanshinone IIA-loaded micelles functionalized with rosmarinic acid: a novel synergistic anti-inflammatory strategy for treatment of atherosclerosis. Journal of Pharmaceutical Sciences, 11110, 2827–2838. https://doi.org/10.1016/j.xphs.2022.05.007

Liu, M., Xiao, R., Li, X., Zhao, Y., Huang, J., 2025. A comprehensive review of recombinant technology in the food industry: Exploring expression systems, application, and future challenges. Comprehensive Reviews in Food Science and Food Safety, 242, e70078. https://doi.org/10.1111/1541-4337.70078

Luo, W., Tao, Y., Chen, S., Luo, H., Li, X., i in., 2022. Rosmarinic acid ameliorates pulmonary ischemia/reperfusion injury by activating the PI3K/Akt signaling pathway. Frontiers in Pharmacology, 13, 860944. https://doi.org/10.3389/fphar.2022.860944

Macedo, P.I.D.S., Pinto, C.A.S.D.O., Hiraishi, C.F., Marques, G.D.A., Escudeiro, C.C., in., 2025. Enhancing Photoprotection and Mitigating Ex Vivo Stratum Corneum Oxidative Stress: A Multifunctional Strategy Combining Rosmarinic Acid with UVB Filters. Antioxidants, 143, 274. https://doi.org/10.3390/antiox14030274

Madureira, A.R., Campos, D.A., Oliveira, A., Sarmento, B., Pintado, M.M., i in., 2016. Insights into the protective role of solid lipid nanoparticles on rosmarinic acid bioactivity during exposure to simulated gastrointestinal conditions. Colloids and Surfaces B: Biointerfaces, 139, 277–284. https://doi.org/10.1016/j.colsurfb.2015.11.039

Mahendra, C.K., Tan, L.T.H., Yap, W.H., Chan, C.K., Lingham, P., i in., 2019. Model of experimentation for photoprotective properties of natural products against ultraviolet C UVC damage: A case study on rosmarinic acid. Progress in Drug Discovery and Biomedical Science, 21. https://doi.org/10.36877/pddbs.a0000027

Marchev, A.S., Vasileva, L.V., Amirova, K.M., Savova, M.S., Koycheva, I.K., i in., 2021. Rosmarinic acid – From bench to valuable applications in food industry. Trends in Food Science and Technology, 117, 182–193. https://doi.org/10.1016/j.tifs.2021.03.015

Matkowski, A. 2008. Plant in vitro culture for the production of antioxidants – a review. Biotechnology Advances, 266, 548–560. https://doi.org/10.1016/j.biotechadv.2008.07.001

Melini, F., Melini, V., Luziatelli, F., Abou Jaoudé, R., Ficca, A.G., i in., 2023. Effect of microbial plant biostimulants on fruit and vegetable quality: current research lines and future perspectives. Frontiers in Plant Science, 14, 1251544. https://doi.org/10.3389/fpls.2023.1251544

Moghadam, A., Foroozan, E., Tahmasebi, A., Taghizadeh, M. S., Bolhassani, M., i in., 2023. System network analysis of Rosmarinus officinalis transcriptome and metabolome – Key genes in biosynthesis of secondary metabolites. PLoS One, 183, e0282316. https://doi.org/10.1371/journal.pone.0282316

Moosavi, F., Hosseini, R., Saso, L., Firuzi, O., 2015. Modulation of neurotrophic signaling pathways by polyphenols. Drug design, development and therapy, 23–42. https://doi.org/10.2147/dddt.s96936

Murino Rafacho, B.P., Portugal dos Santos, P., Goncalves, A.D.F., Fernandes, A.A.H., Okoshi, K., i in., A. 2017. Rosemary supplementation Rosmarinus oficinallis L. attenuates cardiac remodeling after myocardial infraction in rats. PLoS One, 125, e0177521. https://doi.org/10.1371/journal.pone.0177521

Murthy, H.N., Joseph, K.S., Paek, K.Y., Park, S.Y., 2024. Bioreactor configurations for adventitious root culture: recent advances toward the commercial production of specialized metabolites. Critical Reviews in Biotechnology, 445, 837–859. https://doi.org/10.1080/07388551.2023.2233690

Nadeem, M., Imran, M., Aslam Gondal, T., Imran, A., Shahbaz, M., i in., 2019. Therapeutic potential of rosmarinic acid: A comprehensive review. Applied Sciences, 915, 3139. https://doi.org/10.3390/app9153139

Nawaz, M.H., Aizaz, A., Shafique, H., Ropari, A.Q., bin Imran, O., i in., 2024. Rosemary loaded Xanthan coatings on surgical grade stainless steel for potential orthopedic applications. Progress in Organic Coatings, 186, 107987. https://doi.org/10.1016/j.porgcoat.2023.107987

Ngo, Y.L., Lau, C.H., Chua, L.S., 2018. Review on rosmarinic acid extraction, fractionation and its anti-diabetic potential. Food and Chemical Toxicology, 121, 687–700. https://doi.org/10.1016/j.fct.2018.09.064

Nisa, R.U., Nisa, A.U., Tantray, A.Y., Shah, A.H., Jan, A.T., i in., 2024. Plant phenolics with promising therapeutic applications against skin disorders: A mechanistic review. Journal of Agriculture and Food Research, 101090. https://doi.org/10.1016/j.jafr.2024.101090

Nordine, A., 2025. Trends in plant tissue culture, production, and secondary metabolites enhancement of medicinal plants: a case study of thyme. Planta, 2614, 84. https://doi.org/10.1007/s00425-025-04655-8

Ordoñez, R., Atarés, L., Chiralt, A., 2022. Biodegradable active materials containing phenolic acids for food packaging applications. Comprehensive Reviews in Food Science and Food Safety, 215, 3910–3930. https://doi.org/10.1111/1541-4337.13011

Ortega, L.A.J., Salas, M.A.P., Grijalva, E.P.G., Heredia, J.B., 2023. The role of natural products in the management of skin pigmentary anomalies. w: Natural Products for Skin Diseases: A Treasure Trove for Dermatologic Therapy pp. 111–136. Bentham Science Publishers. https://doi.org/10.2174/9789815179668123010008

Petersen, M. 2013. Rosmarinic acid: new aspects. Phytochemistry Reviews, 12, 207–227. https://doi.org/10.1007/s11101-013-9282-8

Petersen, M., Simmonds, M.S. 2003. Rosmarinic acid. Phytochemistry, 622, 121–125.

Priya, V., Srinivasan, D., Priyadarsini, S., Dabaghzadeh, F., Rana, S.S., i in., 2025. Anxiolytic, antidepressant and healthy sleep-promoting potential of rosmarinic acid: mechanisms and molecular targets. Neuropsychiatric Disease and Treatment, 641–661. https://doi.org/10.2147/ndt.s501597

Przybylska-Balcerek, A., Stuper-Szablewska, K., 2019. Phenolic acids used in the cosmetics industry as natural antioxidants. European Journal of Medical Technologies, 4, 24–32.

Rahbardar, M.G., Hosseinzadeh, H., 2020. Therapeutic effects of rosemary Rosmarinus officinalis L. and its active constituents on nervous system disorders. Iranian Journal of Basic Medical Sciences, 239, 1100.

Rašković, A., Milanović, I., Pavlović, N., Ćebović, T., Vukmirović, S., i in., 2014. Antioxidant activity of rosemary Rosmarinus officinalis L. essential oil and its hepatoprotective potential. BMC Complementary and Alternative Medicine, 14, 1–9.

Rasool, M., Malik, A., Manan, A., Arooj, M., Husain Qazi, M., i in., 2015. Roles of natural compounds from medicinal plants in cancer treatment: structure and mode of action at molecular level. Medicinal Chemistry, 117, 618–628. https://doi.org/10.2174/1573406411666150430120038

Ritschel, W.A., Starzacher, A., Sabouni, A., Hussain, A.S., Koch, H.P., 1989. Percutaneous absorption of rosmarinic acid in the rat. Methods and Findings in Experimental and Clinical Pharmacology, 115, 345–352.

Runtuwene, J., Cheng, K.C., Asakawa, A., Amitani, H., Amitani, M., i in., 2016. Rosmarinic acid ameliorates hyperglycemia and insulin sensitivity in diabetic rats, potentially by modulating the expression of PEPCK and GLUT4. Drug design, development and therapy, 2193–2202. https://doi.org/10.2147/dddt.s108539

Sahiner, M., Blake, D.A., Fullerton, M.L., Suner, S.S., Sunol, A.K., i in., 2019. Enhancement of biocompatibility and carbohydrate absorption control potential of rosmarinic acid through crosslinking into microparticles. International Journal of Biological Macromolecules, 137, 836–843. https://doi.org/10.1016/j.ijbiomac.2019.07.032

Sahiner, M., Yilmaz, A.S., Gungor, B., Ayoubi, Y., Sahiner, N., 2022. Therapeutic and nutraceutical effects of polyphenolics from natural sources. Molecules, 2719, 6225. https://doi.org/10.3390/molecules27196225

Salazar, J., Ortega, Á., Pérez, J.L., Garrido, B., Santeliz, R., i in., 2025. Role of polyphenols in dermatological diseases: exploring pharmacotherapeutic mechanisms and clinical implications. Pharmaceuticals, 182, 247. https://doi.org/10.3390/ph18020247

Saucedo-Zuñiga, J.N., Sánchez-Valdes, S., Ramírez-Vargas, E., Guillen, L., Ramos-deValle, L.F., i in., 2021. Controlled release of essential oils using laminar nanoclay and porous halloysite/essential oil composites in a multilayer film reservoir. Microporous and Mesoporous Materials, 316, 110882. https://doi.org/10.1016/j.micromeso.2021.110882

Scarpati, M.L., Oriente, G., 1958. Isolamento e costituzione dell’acido rosmarinico (dal rosmarinus off.). Ricerca scientifica, 28, 2329–2333.

Sen, S., Kasikci, M. 2023. Low-dose rosmarinic acid and thymoquinone accelerate wound healing in retinal pigment epithelial cells. International Ophthalmology, 4310, 3811–3821. https://doi.org/10.1007/s10792-023-02799-8

Sepe, F., Valentino, A., Marcolongo, L., Petillo, O., Calarco, A., i in., 2025. Polysaccharide hydrogels as delivery platforms for natural bioactive molecules: from tissue regeneration to infection control. Gels, 113, 198. https://doi.org/10.3390/gels11030198

Sevgi, K., Tepe, B., Sarikurkcu, C., 2015. Antioxidant and DNA damage protection potentials of selected phenolic acids. Food and Chemical Toxicology, 77, 12–21. https://doi.org/10.1016/j.fct.2014.12.006

Sisti, L., Totaro, G., Bozzi Cionci, N., Di Gioia, D., Celli, A., i in., 2019. Olive mill wastewater valorization in multifunctional biopolymer composites for antibacterial packaging application. International Journal of Molecular Sciences, 2010, 2376. https://doi.org/10.3390/ijms20102376

Subongkot, T., Ngawhirunpat, T., Opanasopit, P., 2021. Development of ultradeformable liposomes with fatty acids for enhanced dermal rosmarinic acid delivery. Pharmaceutics, 133, 404. https://doi.org/10.3390/pharmaceutics13030404

Sujitha, S., Murugesan, R., 2025. Rosmarinic acid and dengue virus: computational insights into antiviral potential. LabMed Discovery, 100042. https://doi.org/10.1016/j.lmd.2025.100042

Sutkowska, J., Hupert, N., Gawron, K., Strawa, J. W., Tomczyk, M., i in., 2021. The stimulating effect of rosmarinic acid and extracts from rosemary and lemon balm on collagen type I biosynthesis in osteogenesis imperfecta type I skin fibroblasts. Pharmaceutics, 137, 938. https://doi.org/10.3390/pharmaceutics13070938

Swari, D.A.M.A., Santika, I.W.M., Aman, I.G.M., 2020. Antifungal activities of ethanol extract of. Journal of rosemary leaf, 28–35. https://doi.org/10.24843/jpsa.2020.v02.i01.p05

Sykłowska-Baranek, K., Gaweł, M., Kuźma, Ł., Wileńska, B., Kawka, M., i in., 2023. Rindera graeca A. DC. boiss. & heldr. Boraginaceae in vitro cultures targeting lithospermic acid B and rosmarinic acid production. Molecules, 2812, 4880. https://doi.org/10.3390/molecules28124880

Tada, H., Murakami, Y., Omoto, T., Shimomura, K., Ishimaru, K., 1996. Rosmarinic acid and related phenolics in hairy root cultures of Ocimum basilicum. Phytochemistry, 422, 431–434. https://doi.org/10.1016/0031-9422(96)00005-2

Taher, M., El-Daly, N.M., El-Khateeb, A.Y., Hassan, S.M., Elsherbiny, E.A., 2021. Chemical composition, antioxidant, antitumor and antifungal activities of methanolic extracts of Coleus blumei, Plectranthus amboinicus and Salvia splendens Lamiaceae. Journal of Agricultural Chemistry and Biotechnology, 1211, 177–187. https://doi.org/10.21608/jacb.2021.209208

Tsai, T.H., Chuang, L.T., Lien, T.J., Liing, Y.R., Chen, i in., 2013. Rosmarinus officinalis extract suppresses Propionibacterium acnes–induced inflammatory responses. Journal of Medicinal Food, 164, 324–333. https://doi.org/10.1089/jmf.2012.2577

Ueda, H., Yamazaki, C., Yamazaki, M., 2002. Luteolin as an anti-inflammatory and anti-allergic constituent of Perilla frutescens. Biological and Pharmaceutical Bulletin, 259, 1197–1202. https://doi.org/10.1248/bpb.25.1197

Vasileva, L.V., Savova, M.S., Tews, D., Wabitsch, M., Georgiev, M.I., 2021. Rosmarinic acid attenuates obesity and obesity-related inflammation in human adipocytes. Food and Chemical Toxicology, 149, 112002. https://doi.org/10.1016/j.fct.2021.112002

Veenstra, J.P., Johnson, J.J., 2021. Rosemary Salvia rosmarinus: Health-promoting benefits and food preservative properties. International Journal of Nutrition, 64, 1. https://doi.org/10.14302/issn.2379-7835.ijn-21-3874

Verma, P., Khan, S.A., Alhandhali, A.J.A., Parasharami, V.A., 2021. Bioreactor upscaling of different tissue of medicinal herbs for extraction of active phytomolecules: A step towards industrialization and enhanced production of phytochemicals. w: Aftab, T., Hakeem K.R. (Red.) Plant growth regulators: Signalling under stress conditions, 455–481. https://doi.org/10.1007/978-3-030-61153-8_21

Wang, G.Y., Chen, S.Y., Chen, Y.Y., Hong, C.J., Hsu, Y.H., i in., 2021. Protective effect of rosmarinic acid-rich trichodesma khasianum clarke leaves against ethanol-induced gastric mucosal injury in vitro and in vivo. Phytomedicine, 80, 153382. https://doi.org/10.1016/j.phymed.2020.153382

Wang, J., Li, G., Rui, T., Kang, A., Li, G., i in., 2017. Pharmacokinetics of rosmarinic acid in rats by LC-MS/MS: Absolute bioavailability and dose proportionality. RSC Advances, 715, 9057-9063. https://doi.org/10.1039/c6ra28237g

Wang, L., Wang, H., Chen, J., Qin, Z., Yu, S., i in., 2023. Coordinating caffeic acid and salvianic acid A pathways for efficient production of rosmarinic acid in Escherichia coli. Metabolic Engineering, 76, 29–38. https://doi.org/10.1016/j.ymben.2023.01.002

Wang, L., Yang, H., Wang, C., Shi, X., Li, K., 2019a. Rosmarinic acid inhibits proliferation and invasion of hepatocellular carcinoma cells SMMC 7721 via PI3K/AKT/mTOR signal pathway. Biomedicine and Pharmacotherapy, 120, 109443. https://doi.org/10.1016/j.biopha.2019.109443

Wang, S.J., Chen, Q., Liu, M.Y., Yu, H.Y., Xu, J.Q., i in., 2019b. Regulation effects of rosemary Rosmarinus officinalis Linn. on hepatic lipid metabolism in OA induced NAFLD rats. Food and Function, 1011, 7356–7365. https://doi.org/10.1039/c9fo01677e

Wang, Y., Liang, Z., Cao, Y., Hung, C.H., Du, R., i in., 2024. Discovery of a novel class of rosmarinic acid derivatives as antibacterial agents: Synthesis, structure-activity relationship and mechanism of action. Bioorganic Chemistry, 146, 107318. https://doi.org/10.1016/j.bioorg.2024.107318

Wawrzyńczak, A., 2023. Cosmetic and pharmaceutic products with selected natural and synthetic substances for melasma treatment and methods of their analysis. Cosmetics, 103, 86. https://doi.org/10.3390/cosmetics10030086

Xiang, Y., Ji, M., Wu, L., Lv, L., Liang, Q., i in., 2022. Rosmarinic acid prevents cisplatin-induced liver and kidney injury by inhibiting inflammatory responses and enhancing total antioxidant capacity, thereby activating the Nrf2 signaling pathway. Molecules, 2722, 7815. https://doi.org/10.3390/molecules27227815

Xiao, Y., Zhang, L., Gao, S., Saechao, S., Di, P., i in., 2011. The c4h, tat, hppr and hppd genes prompted engineering of rosmarinic acid biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. PLoS One, 612, e29713. https://doi.org/10.1371/journal.pone.0029713

Xu, Y., Han, S., Lei, K., Chang, X., Wang, K., i in., 2016. Anti-Warburg effect of rosmarinic acid via miR-155 in colorectal carcinoma cells. European Journal of Cancer Prevention, 256, 481–489. https://doi.org/10.1097/cej.0000000000000205

Xu, Y., Xu, G., Liu, L., Xu, D., Liu, J., 2010. Anti‐invasion effect of rosmarinic acid via the extracellular signal‐regulated kinase and oxidation–reduction pathway in Ls174‐T cells. Journal of Cellular Biochemistry, 1112, 370–379. https://doi.org/10.1002/jcb.22708

Yang, J., Goksen, G., Zhang, W., 2023. Rosemary essential oil: Chemical and biological properties, with emphasis on its delivery systems for food preservation. Food Control, 154, 110003. https://doi.org/10.1016/j.foodcont.2023.110003

Yeddes, W., Bettaieb Rebey, I., Manai-Djebali, H., Rguez, S., Hammami, M., i in., 2025. Assessing the efficacy of rosemary extract as a natural preservative for enhancing oxidative stability and preventing rancidity in linseed oil. Journal of Food Measurement and Characterization, 1–12. https://doi.org/10.1007/s11694-025-03107-x

Yeddes, W., Chalghoum, A., Aidi-Wannes, W., Ksouri, R., Saidani Tounsi, M., 2019. Effect of bioclimatic area and season on phenolics and antioxidant activities of rosemary Rosmarinus officinalis L. leaves. Journal of Essential Oil Research, 315, 432–443. https://doi.org/10.1080/10412905.2019.1577305

Yi, D., Wang, M., Liu, X., Qin, L., Liu, Y., i in., 2024. Rosmarinic acid attenuates Salmonella enteritidis-induced inflammation via regulating TLR9/NF-κB signaling pathway and intestinal microbiota. Antioxidants, 1310, 1265. https://doi.org/10.3390/antiox13101265

Youn, J., Lee, K.H., Won, J., Huh, S.J., Yun, H.S., i in., 2003. Beneficial effects of rosmarinic acid on suppression of collagen induced arthritis. The Journal of Rheumatology, 306, 1203–1207.

Yücel, Ç., Şeker Karatoprak, G., Değim, İ.T., 2019. Anti-aging formulation of rosmarinic acid-loaded ethosomes and liposomes. Journal of Microencapsulation, 362, 180–191. https://doi.org/10.1080/02652048.2019.1617363

Zeid, A., Karabagias, I. K., Nassif, M., and Kontominas, M. G., 2019. Preparation and evaluation of antioxidant packaging films made of polylactic acid containing thyme, rosemary, and oregano essential oils. Journal of Food Processing and Preservation, 4310, e14102. https://doi.org/10.1111/jfpp.14102

Zeng, Y., Guo, L. P., Chen, B. D., Hao, Z. P., Wang, J. Y., i in., 2013. Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: current research status and prospectives. Mycorrhiza, 23, 253–265. https://doi.org/10.1007/s00572-013-0484-0

Zenk, M. H., El-Shagi, H., and Ulbrich, B., 1977. Production of rosmarinic acid by cell-suspension cultures of Coleus blumei. Naturwissenschaften, 64, 585–586.

Zhou, P., Yue, C., Zhang, Y., Li, Y., Da, X., i in., 2022. Alleviation of the byproducts formation enables highly efficient biosynthesis of rosmarinic acid in Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 7016, 5077–5087. https://doi.org/10.1021/acs.jafc.2c01179

Zhou, Z., Tan, H., Li, Q., Chen, J., Gao, S., i in., 2018. CRISPR/Cas9-mediated efficient targeted mutagenesis of RAS in Salvia miltiorrhiza. Phytochemistry, 148, 63–70. https://doi.org/10.1016/j.phytochem.2018.01.015

Zhuang, Y., Jiang, J., Bi, H., Yin, H., Liu, S., i in., 2016. Synthesis of rosmarinic acid analogues in Escherichia coli. Biotechnology Letters, 38, 619–627. https://doi.org/10.1007/s10529-015-2011-1

KOSMOS

Downloads

  • PDF (Język Polski)

Published

2025-09-30

Issue

Vol. 74 No. 3 (347) (2025): Plants and people – a shared history, a shared future. A new perspective.

Section

Articles

License

Copyright (c) 2026 KOSMOS

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Stats

Number of views and downloads: 8
Number of citations: 0

Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop